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1. Introduction

Whilst seeking information about Charles Babbage and Ada
Augusta, Countess of Lovelace, for use as introductory
material for a lecture on the evolution of programming, I came
across a reference to a paper entitled "Automatic Calculating
Engines’ by one Percy E. Ludgate (1914). The paper proved
to contain a brief but competent account of Babbage’s
Analytical Engine, but, to my great surprise, it ended with the
following comments:

‘I have myself designed an analytical machine, on
different lines from Babbage’s, to work with 192 variables
of 20 figures each. A short account of it appeared in the
Scientific Proceedings, Royal Dublin Society, April 1909.
Complete descriptive drawings of the machine exist, as
well as a description in manuscript, but I have not been
able to take any steps to have it constructed.’

I immediately sought out a copy of this 1909 paper and found
that 1t consisted of a fascinating account of a machine which
was indeed quite comparable to, yet quite different from,
Babbage’s famous Analytical Engine. At the time I had never
questioned the more or less standard account, found in the
introductions to many textbooks on computing, which jump
straight from the work of Babbage, started in 1834, to that of
Aiken (and sometimes Stibitz and Zuse) just over 100 years
later.* The purpose of the present paper is to put Ludgate’s
work Into perspective, and to document the results of an
extensive search for further information about his life and work.
His 1909 paper and a review of it by Professor C. V. Boys that
appeared shortly afterwards are reprinted in full as Appendices
| and 2.

2. Background

Charles Babbage died in 1872, having failed to complete either
the full scale version of his difference engine, or his analytical
engine (a large amount of original material on Babbage’s
engines has been reprinted by Morrison and Morrison, 1961).
Shortly before his death part of the analytical engine (the
arithmetic mill, together with a printing device) was put
together and 1s now in the Science Museum, London (see
Baxandall, 1926). In 1878, a committee of the British Associ-
atton for the Advancement of Science wrote a report
(Merrifield, 1878) which praised the basic conception of the
analytical engine ‘as a marvel of mechanical ingenuity and
resource’, but concluded that ‘in the present state of the design
it 1s not more than a theoretical possibility; that is to say, we
do not consider it a certainty that it could be constructed and

put together so as to run smoothly and correctly, and to do the
work expected of it. . . . we have come, not without reluctance,
to the conclusion, that we cannot advise the British Association
to take any steps, either by way of recommendation or other-
wise, to procure the construction of Mr. Babbage’s Analytical
Engine’. However, according to Babbage’s son (H. P. Babbage,
1888) an arithmetic unit (presumably the one referred to above),
was used to give a successful demonstration to the committee
of the operation of addition, with parallel assimilation of the
carry digits.

Shortly afterwards Babbage’s son put together another
arithmetic unit and printing device, using pieces of mechanism
and designs left by his father. This was completed and in 1910
by way of a demonstration was used to calculate and print
successive multiples of n (Baxandall, 1926). This machine is
now also in the Science Museum. In contrast, it would seem
that the other major components of the engine, namely the
store (originally planned to have a storage capacity for 1,000
numbers, each of 50 decimal digits, later reduced to 200
numbers, each of 25 digits) and the control mechanism were
never constructed.

It is, in retrospect, clear that the complete analytical engine
was far ahead of the technology of the time—indeed it has been
claimed that Babbage’s efforts were worthwhile merely for the
benefits that they brought to mechanical engineering.

The boldness of Babbage’s plans becomes clear when one
realises that 1t was only during the mid-ninteenth century that
a calculating machine (the arithometer of Thomas de Colmar,
the first version of which was invented in 1820) achieved
commercial success. In fact it was only towards the end of the
century that mechanical calculating machines received wide-
spread use (see Wilkes, 1956). On the other hand, Jacquard
looms, whose technique of punched card control Babbage
intended to use, were well established quite early in the nine-
teenth century. However, the use of punched cards for re-
cording logical and numerical data had to await the work of
Hollerith in the 1880s. His system. which was electro-mechani-
cal, was used with great success in the 1890 US Census and
within a few years had spread to several European countries,
although for several years card handling was manual, rather
than mechanised.

One can, therefore, with hindsight, claim that by the turn of
the century the time had become much more propitious for the
development of an analytical engine, or as we would now term
1t, a program-controlled computer. However, Ludgate’s con-
tribution was not that of making a second attempt to imple-
ment Babbage’s machine, taking advantage of the improved
technological capabilities of the day. Rather, he claims that

*I have since found just two accounts of the history of computers which even mention Ludgate’s description of his analytical machine,
namely Hoffman (1962) and Wilkes (1956). The latter contains the most detailed modern appraisal of Babbage’s analytical engine that 1 have

encountered.
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until the later stages of his efforts, he had been in ignorance of
Babbage’s work, and his design is sufficiently novel for this to
be accepted. Indeed all three main components of his analy-
tical machine, the store, the arithmetic unit and the sequencing
mechanism show evidence of considerable ingenuity and
originality.

3. The store

The method of data storage that Ludgate designed used a
‘shuttle’ for each variable. Each shuttle acted as a carrier for a
set of protruding metal rods, there being one rod for the sign,
and for each of the 20 decimal digits comprising a number. The
current value of each digit of the number currently stored in the
shuttle was represented by the lateral position of the corres-
ponding rod, i.e. by the length of rod protruding from the
shuttle. The shuttles were to be held in ‘two co-axial cylindrical
shuttle-boxes’. A particular number could be brought to the
arithmetic unit by rotating the appropriate shuttle box through
an appropriate angle. There was also to be provision for tables
of constants, represented by sets of holes, of depth from one to
nine units, drilled into the surface of one or more special
cylinders.

Assuming that there are appropriate means of transferring
data between this type of representation and that used in the
arithmetic unit (a topic on which Ludgate’s paper is rather
obscure), this method of storage would appear to have con-
siderable advantages over that used by Babbage, 1.e. columns
of toothed discs, each capable of being connected by a train of
gear wheels to the arithmetic unit. Certainly it is very conven-
ient to access a number merely by an appropriate rotation of a
cylindrical shuttle box. Ludgate mentions a further advantage,
i.e. ‘that the shuttles are quite independent of the machine, so
that new shuttles, representing new variables can be introduced
at any time’—one could perhaps claim that this was the fore-
runner of the modern replaceable disk!

4. The arithmetic unit

It is in the arithmetic unit that Ludgate’s machine differs most
markedly from that of Babbage, and indeed, as far as I can
prove, from all other mechanical calculating machines. The
unit is a ‘direct’ or ‘partial product’ multiplying machine,
rather than one in which multiplication is performed by
repeated addition. Direct multiplying machines already existed
by the time of Ludgate. The first successful one was that of
Bollée invented in 1889, although patents had earlier been
granted to Barbour in 1872 and to Verea in 1878 for machines
of this type. Indeed by the turn of the century a direct multi-
plying machine, known as the ‘Millionaire’, was starting to
achieve wide distribution in Europe and America (see Chase
1952).

Each of these machines performed their multiplication of
individual digits from the two different operands by what was
in essence a table-look-up on a complete multiplication table.
(Bollée represented the table by an array of 100 pairs of rods,
each rod being one to nine units long—there is no means of
knowing whether this was the inspiration for Ludgate’s
method of number storage.)

In Ludgate’s machine what is essentially a logarithmic method
of multiplication is used. Each digit of one operand is trans-
lated into the corresponding ‘index number’ (or ‘Irish
logarithm’, as Boys so delightfully terms it). This set of index
numbers is then added to the index number form of one of the
digits of the other operand. The additions are performed con-

currently by simple concatenation of lateral displacements.
Then a reverse translation is performed to obtain the set of
two-digit partial products. (The description of the mechanism
for doing all this is somewhat obscure, and gives one a clearer
impression of its ingenuity than its practicality.) The set of
partial products so obtained for each digit in the second
operand are then accumulated using a ‘mill’, which is pre-
sumably a fairly conventional set of co-axial toothed wheels
incorporating a carrying mechanism. Ludgate claims that he
designed his own version of Babbage’s ‘anticipating carriage’
1.e. mechanism for assimilation, in a single step, of all the cassy
digits produced during the addition of two numbers (des-
cribed in Babbage, 1851), but gives no details of his design.

Ludgate was equally unconventional in his scheme for
division, which instead of using repeated subtractions was
based upon a table of reciprocals of the integers 100 to 999, and
a rapidly convergent series for (1 + x)~ !, where |x] < 107"
The calculation of the series was controlled by what we would
now call a built-in subroutine.

S. The sequencing mechanism

The sequencing mechanism that Ludgate describes has more in
common with that used on the Harvard Mk. 1 (Aiken and
Hopper, 1946) nearly 40 years later, than that designed by
Babbage for his analytical engine.®* Ludgate’s machine was to
be controlled by a perforated paper tape, termed a ‘formula
paper’, on which each row of perforations defined a complete
instruction. Each instruction specified two operands, the type
of arithmetic operation to be performed, and the location (or
pair of locations) which was to receive the result. Babbage on
the other hand, for some unknown reason, intended to use
two distinct sets of Jacquard cards, one for specifying which
variables were to provide the operands for and receive the
result from, each operation (the so-called ‘variable cards’),
the other for specifying the sequence of types of operations
(‘operation cards’). Furthermore, there were to be means for
economising on operation cards (but not apparently variable
cards) by indicating the number of times that there were to be
repeated applications of the same type of arithmetic operation,
rather than supply a sequence of identical operation cards (see
Lady Lovelace’s translation of Menabrea’s article (Menabrea,
1843 note D)). It is not clear how Babbage intended to use the
specification, on a variable card, of a particular variable, to
access the column of disks representing that variable; in
Ludgate’s machine, as mentioned earlier, all that was necessary
was to arrange for the appropriate angle of rotation of the
shuttle-box containing the shuttle representing the required
variable.

Ludgate clearly agreed with Babbage as to the fundamental
importance of conditional branching, although he does not
indicate how it was to be done—presumably, following
Babbage, he intended that the mechanism that read the formula
paper could be directed to skip a specified number of rows,
either forwards or backwards. (It is interesting to note that the
original Harvard Mk. 1 had only a very limited form of
conditional branching.)

A third feature of the sequencing mechanism was the pro-
vision of built-in subroutines. The operation code for division,
for example, caused control to pass temporarily to a sequence
of instructions represented by rows of perforations on a
permanent ‘dividing cylinder’. Another cylinder provided a
logarithm subroutine, and Ludgate mentions the possibility of
indefinite expansion of the set of such auxiliary cylinders.

*Interestingly enough, a memorandum written by Aiken (1937) outlining his plans for an automatic calculating machine, mentions Ludgate
in addition to describing Babbage’s work on difference and analytical engines. However, the reference, whose wording closely follows that
used earlier by Baxandall (1926), merely lists Ludgate amongst the designers of difference engines, so there is little reason to suppose that

Aiken was familiar with Ludgate’s plans.
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6. Percy E. Ludgate

The two papers by Ludgate and the review of the first of these

by C. V. Boys, gave only a few meagre starting points for a
ssarch for further information about his life and work.
Baxandall (1926) had indicated that Ludgate was Irish but it
was not known whether this was based merely on the fact that
his first paper had appeared in the Scientific Proceedings of the
Royal Dublin Society.

A search of standard reference works proved fruitless, and no
further papers by Ludgate were traced, leading to the surmise
(later proved correct) that he had died at a fairly early age.
Inquiries of academic institutions and societies, mainly 1in
Ireland, were similarly unsuccessful. Eventually his niece,
Miss Violet Ludgate, who luckily is still living in Dublin, was
traced through the heroic efforts of Mr. Desmond Clarke,
Librarian and Secretary of the Royal Dublin Society, who
contacted each of the Ludgates listed in the Dublin telephone
directory. The following details of Percy Ludgate’s life were
obtained either directly from Miss Ludgate, or by following up
leads that she furnished.

Percy Edwin Ludgate was born on 2 August 1883, at the house
of his parents Michael and Mary Ludgate in Townsend Street,
Skibbereen, County Cork, Ireland. He was the youngest of four
children, all boys, his brothers being named Thomas, Frederick
and Alfred. His father, Michael Ludgate, was born at Mallow,
County Cork, and was married whilst serving in the army. He
and his wife spent a part of their married life in India, where
their first child, Thomas, was born. The second child, Frederick,
was born in Winchester in 1879. Later the family moved to
Ireland, first to Skibbereen, and later to Dublin, where Percy
was brought up. It is believed that Percy Ludgate attended
North Strand Parish School, and that he studied accountancy
at Rathmines College of Commerce, Dublin, and was awarded
a gold medal by the Corporation of Accountants on the
occasion of his final examination, which he passed with dis-
tinction. (Efforts to confirm these details of his education have
not so far met with any success.) He attended St. George’s
Church, Temple Street, Dublin.

Percy Ludgate worked as an auditor until his death, with the
firm of Kevans and Son, 31 Dame Street, Dublin, which later
transferred to Westmoreland Street, and is now part of the
firm of Cooper Brothers. It seems almost certain that his work
on the analytical machine was a private hobby which, according
to his niece, ‘he used to work at nightly, until the small hours
of the morning’. He never married. Quoting from another
letter that I received from Miss Ludgate: ‘Percy liked walking;
he took long solitary walks. I do not think he had many other
interests. He attended his parish church services regularly. He
was very gentle, a modest simple man. I never heard him make
a condemning remark about anyone. 1 would say he was a
really good man, highly thought of by anyone who knew him.
Always appeared to be thinking deeply.” The photograph
(Fig, 1), is believed to have been taken a few years before his
death.

The one other person I have traced who has recollections of
Percy Ludgate is Mr. E. Dunne, of Cooper Brothers, who
joined the firm of Kevans and Son early in 1921. According to
Mr. Dunne, ‘My association with Mr. Ludgate was quite brief,
but I had known him by repute for some time . . . As a person
he possessed the characteristics one usually associates with
genius, and he was so regarded by his colleagues on the staff . . .
Like all men of his stature he was humble, courteous, patient
and popular, and his early death closed a career that was full of
promise for the future . . . The books and other memoranda of
his disappeared and whether they were taken away by Percy
before he became ill, or treated as part of the flotsam when
Kevans and Son moved to Westmoreland Street, I cannot
unfortunately say.” During the 1914-18 war he worked for a
committee, set up by the War Office, headed by Mr. T.

Fig. 1.

Percy E. Ludgate

Condren-Flinn, senior partner of Kevans and Son. The task
of this committee was to control the production and sale of
oats, over a wide area of the country, in order to maintain a
supply for the cavalry divisions of the army. This involved
planning and organisation on a vast scale and Ludgate was
much praised for the major role that he played. It 1s interesting
to note that this provides a further parallel to the work of
Charles Babbage who, because of his book On the Economy of
Machinery and Manufactures, has often been called one of the
originators of what is now known as ‘Operational Research’.

It has not proved possible to obtain any information about his
contacts with Professor A. W. Conway, of University College
Dublin, who communicated Ludgate’s paper to the Royal
Dublin Society. Similarly unsuccessful have been efforts to
trace the present whereabouts of the papers of Professor C. V.
Boys, in the hope of finding his correspondence with Ludgate.
(The obituary notice for Professor Boys which appeared in the
Proceedings of the Physical Society in November 1944 stated
that his papers ‘were found well preserved and in meticulous
order at his death’.) Furthermore, the records of the committee
set up by the Royal Society of Edinburgh to organise the
Napier Tercentenary Celebration, for whose handbook
Ludgate contributed the article entitled ‘Automatic Calculating
Engines’, have apparently not been preserved. (For some
unknown reason Ludgate is not included in the listing of
names and affiliations of contributors given at the back of the
handbook.) Finally, no records have been found of any
attempts to patent the analytical machine, or to obtain financial
backing for its construction from the government.

At his death, on 16 October 1922, which occurred shortly
after his return from a holiday in Lucerne, and which was
announced in a brief obituary notice in the Irish Times two
days later, Percy Ludgate was living with his widowed mother
and his brother Alfred, at 30 Dargle Road, Drumcondra,
Dublin. He had developed pneumonia, and his brother
Frederick’s wife (or rather, widow, since Frederick had died
nine months earlier) who had helped to nurse Percy during his



fatal illness, contracted pneumonia herself and died six days
after Percy. leaving a daughter, Violet, who is now the sole
surviving descendant of Michael and Mary Ludgate.

In his will, drawn up some five years before his death, Percy
Ludgate had appointed his brother Alfred as his executor, and
had willed the residue of his estate to his mother. His assets,
mostly government stocks, amounted to somewhat over £800,
and included a mere £10 for his personal effects. There is no
means of knowing whether his drawings and manuscripts
relating to the analytical engine were amongst these personal
effects. His mother died in 1946, aged 97, and his brother
Thomas, who had lived most of his life in Peacehaven, Sussex,
in 1951. If any drawings or manuscripts had remained in the
family they would presumably have passed into the possession
of Percy’s brother Alfred. However, there is no indication that
this happened, and at Alfred’s death in 1953 no such papers
were found amongst his effects.

7. Concluding remarks

It seems unlikely that Ludgate ever attempted to construct the
machine described in his 1909 paper. In fact in the 1914 paper
he implies that he had discarded the plans, in favour of a
second design:

‘The most pleasing characteristic of a difference engine
made on Babbage’s principle is the simplicity of its action,
the difference being added together in unvarying sequence;
but notwithstanding its simple action, its structure is
complicated by a large amount of adding mechanism—a
complete set of adding wheels with carrying gear being
required for the tabular number, and every order of
difference except the highest order. On the other hand,
while the best feature of the analytical engine or machine
is the Jacquard apparatus (which, without being itself
complicated, may be made a powerful instrument for
interpreting mathematical formula), its weakness lies in
the diversity of movements the Jacquard apparatus must
control. Impressed by these facts, and with the desirability
of reducing the expense of construction, I designed a
second machine in which are combined the best principles
of both the analytical and difference types, and from
which are excluded their more expensive characteristics.
By using a Jacquard I found it possible to eliminate the
redundancy of parts hitherto found in difference-engines,
while retaining the native symmetry of structure and
harmony of action of machines of that class. My second
machine, of which the design is on the point of completion,
will contain but one set of adding wheels, and its move-
ments will have a rhythm resembling that of the Jacquard
loom itself. 1t is primarily intended to be used as a dif-
ference-machine, the number of orders of differences being
sixteen. Moreover, the machine will also have the power
of automatically evaluating a wide range of miscellaneous

formulae.’

Excepting the possibility that further searches, perhaps
stimulated by this paper, succeed in locating Ludgate’s designs
or correspondence, or trace some hitherto unsuspected
collaborator, our appraisal of him will have to remain based
on the fragmentary evidence afforded by his two published
papers. One must, however, wonder just how much more he
might have achieved if he had had but a modest fraction of the
resources available to Babbage (to say nothing of Aiken!),
and Liad not succumbed to pneumonia at such a tragically

early age.
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Appendix 1

(Reprinted from Scientific Proceedings,
Royal Dublin Society 12, 9 (1909) pp. 77-91.)

ON A PROPOSED ANALYTICAL MACHINE
by
Percy E. Ludgate
(Communicated by Professor A. W. Conway, M.A.)

[Read February 23. Ordered for Publication March 9.
Published April 28, 1909.]

I purpose to give in this paper a short account of the result of
about six years’ work, undertaken by me with the object of
designing machinery capable of performing calculations,
however intricate or laborious, without the immediate guidance
of the human intellect.

In the first place I desire to record my indebtedness to
Professor C. V. Boys, F.R.S., for the assistance which I owe
to his kindness in entering into correspondence with me on the
matter to which this paper is devoted.

It would be difficult and very inadvisable to write on the
present subject without referring to the remarkable work of
Charles Babbage, who, having first invented two Difference
Engines, subsequently (about eighty years ago) designed an
Analytical Engine, which was shown to be at least a theoretical
possibility; but unfortunately its construction had not pro-
ceeded far when its inventor died. Since Babbage’s time his
Analytical Engine seems to have been almost forgotten; and it
is probable that no living person understands the details of its
projected mechanism. My own knowledge of Babbage's
Engines is slight, and for the most part limited to that of their
mathematical principles.

The following definitions of an Analytical Engine, written by
Babbage’s contemporaries, describe its essential functions as
viewed from different standpoints:

‘A machine to give us the same control over the execu-
tive which we have hitherto only possessed over the
legislative department of mathematics.™

‘The material expression of any indefinite function of
any degree of generality and complexity, such as, for
instance: F(x, y, z, log x, sin y, &c.), which 1s, 1t will be
observed, a function of all other possible functions of any
number of quantities.’]

*C. Babbage: ‘Passages from the Life of a Philosopher’, p. 129.
+R. Taylor’s ‘Scientific Memoirs’, 1843, vol. 1ii., p. 691.
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‘An embodying of the science of operations constructed
with peculiar reference to abstract number as the subject

of those operations.”™
‘A machine for weaving algebraical patterns.’{

These four statements show clearly that an Analytical
Machine ‘does not occupy common ground with mere
“calculating machines”. It holds a position wholly its own’.

In order to prevent misconception, I must state that my work
was not based on Babbage’s results—indeed, until after the
completion of the first design of my machine, I had no know-
ledge of his prior efforts in the same direction. On the other
hand, I have since been greatly assisted in the more advanced
stages of the problem by, and have received valuable sug-
gestions from, the writings of that accomplished scholar.
There is in some respects a great resemblance between
Babbage’s Analytical Engine and the machine which I have
designed—a resemblance which is not, in my opinion, due
wholly to chance, but in a great measure to the nature of the
investigations, which tend to lead to those conclusions on
which the resemblance depends. This resemblance 1s almost
entirely confined to the more general, abstract, or mathematical
side of the question; while the contrast between the proposed
structure of the two projected machines could scarcley be
more marked.

It is unnecessary for me to prove the possibility of designing
a machine capable of automatically solving all problems which
can be solved by numbers. The principles on which an Analy-
tical Machine may rest ‘have been examined, admitted,
recorded, and demonstrated’. I would refer those who desire
information thereon to the Countess of Lovelace’s translation
of an article on Babbage’s Engine, which, together with
copious notes by the translator, appears in R. Taylor’s
‘Scientific Memoirs’, vol. iii. ; to Babbage’s own work, "Passages
from the Life of a Philosopher’: and to the Report of the
British Association for the year 1878, p. 92. These papers
furnish a complete demonstration that the whole of the
developments and operations of analysis are capable of being
executed by machinery.

Notwithstanding the complete and masterly treatment of the
question to be found in the papers mentioned, it will be neces-
sary for me briefly to outline the principles on which an
Analytical Machine is based, in order that my subsequent
remarks may be understood.

An Analytical Machine must have some means of storing the
numerical data of the problem to be solved, and the figures
produced at each successive step of the work (together with the
proper algebraical signs); and, lastly, a means of recording the
result or results. It must bz capable of submitting any two of
the numbers stored to the arithmetical operation of addition,
subtraction, multiplication, or division. It must also be able
to select from the numbers it contains the proper numbers to
be operated on; to determine the nature of the operation to
which they are to be submitted; and to dispose of the result of
the operation, so that such result can be recalled by the machine
and further operated on, should the terms of the problem
require it. The sequence of operations, the numbers (considered
as abstract quantities only) submitted to those operations, and
the disposition of the result of each operation, depend upon
the algebraical statement of the calculation on which the
machine is engaged:; while the magnitude of the numbers
involved in the work varies with the numerical data of that
particular case of the general formula which is in process of
solution. The qGuestion therefore naturally arises as to how a
machine can be made to follow a particular law of development
as expressed by an algebraic formula. An eminently satis-

*loc. cit., p. 694.
tloc. cit., p. 696.
tC. Babbage: ‘Passages from the Life of a Philosopher’, p. 450.
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factory answer to that question (and one utilised by both
Babbage and myself) is suggested by the Jacquard loom, in
which interesting invention a system of perforated cards is used
to direct the movements of the warp and weft threads, so as to
produce in the woven material the pattern intended by the
designer. It is not difficult to imagine that a similar arrange-
ment of cards could be used in a mathematical machine to
direct the weaving of numbers, as it were, into algebraic
patterns, in which case the cards in question would constitute
a kind of mathematical notation. It must be distinctly under-
stood that, if a set of such cards were once prepared in accord-
ance with a specified formula, it would possess all the general-
ity of algebra, and include an infinite number of particular
cases.

[ have prepared many drawings of the machine and its parts;
but it is not possible in a short paper to go into any detail as to
the mechanism by means of which elaborate formulae can be
evaluated, as the subject is necessarily extensive and somewhat
complicated ; and I must, therefore, confine myself to a super-
ficial description, touching only points of particular interest or
importance.

Babbage’s Jacquard-system and mine differ considerably; for,
while Babbage designed two sets of cards—one set to govern
the operations, and the other set to select the numbers to be
operated on—I use one sheet or roll of perforated paper
(which, in principle, exactly corresponds to a set of Jacquard-
cards) to perform both these functions in the order and manner
necessary to solve the formula to which the particular paper is
assigned. To such a paper I apply the term formula-paper.
Each row of perforations across the formula-paper directs the
machine in some definite step in the process of calculation—
such as, for instance, a complete multiplication, including the
selection of the numbers to be multiplied together. Of course a
single formula-paper can be used for an indefinite number of
calculations, provided that they are all of one type or kind
(i.e. algebraically identical).

In referring to the numbers stored in the machine, the
difficulty arises as to whether we refer to them as mere numbers
in the restricted arithmetical sense, or as quantities, which,
though always expressed in numerals, are capable of practically
infinite variation. In the latter case they may be regarded as
true mathematical variables. It was Babbage’s custom (and
one which I shall adopt) when referring to them in this sense to
use the term ‘Variable’ (spelt with capital V), while applying
the usual meanings to the words ‘number’ and ‘variable’.

In my machine each Variable is stored in a separate shuttle,
the individual figures of the Variable being represented by the
relative positions of protruding metal rods or ‘type’, which
each shuttle carries. There is one of these rods for every figure
of the Variable, and one to indicate the sign of the Variable.
Each rod protrudes a distance of from 1 to 10 units, according
to the figure or sign which it is at the time representing. The
shuttles are stored in two co-axial cylindrical shuttle-boxes,
which are divided for the purpose into compartments parallel
to their axis. The present design of the machine provides for the
storage of 192 Variables of twenty figures each; but both the

‘number of Variables and the number of figures in each

Variable may, if desired, be greatly increased. It may be
observed, too, that the shuttles are quite independent of the
machine, so that new shuttles, representing new Variables, can
be introduced at any time.

When two Variables are to be multiplied together, the corres-
ponding shuttles are brought to a certain system of slides called
the index, by means of which the machine computes the
product. It is impossible precisely to describe the mechanism
of the index without drawings; but it may be compared to a
slide-rule on which the usual markings are replaced by move-
able blades. The index is arranged so as to give several readings
simultaneously. The numerical values of the readings are indi-
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cated by periodic displacements of the blades mentioned, the
duration of which displacements are recorded in units measured
by the driving shaft on a train of wheels called the mill, which
performs the carrying of tens, and indicates the final product.
The product can be transferred from thence to any shuttle, or
to two shuttles simultaneously, provided that they do not
belong to the same shuttle-box. The act of inscribing a new
value in a shuttle automatically cancels any previous value that
the shuttle may have contained. The fundamental action of the
machine may be said to be the multiplying together of the
numbers contained in any two shuttles, and the inscribing of
the product in one or two shuttles. It may be mentioned here
that the fundamental process of Babbage’s Engine was not
multiplication but addition.

Though the index is analogous to the slide-rule, it is not
divided logarithmically, but in accordance with certain
index numbers, which, after some difficulty, I have arranged for
the purpose. I originally intended to use the logarithmic
method, but found that some of the resulting intervals were too
large; while the fact that a logarithm of zero does not exist is,
for my purpose, an additional disadvantage. The index
numbers (which I believe to be the smallest whole numbers
that will give the required results) are contained in the following
tables:

Column 1 of Table 1 contains zero and the nine digits, and
column 2 of the same Table the corresponding simple index

Table 1

UNIT SIMPLE ORDINAL

INDEX NO.

0 50 9

| 0 0

2 ] |

3 7 4

4 2 2

5 23 7

6 8 5

i 33 8

8 3 3

9 14 6
e ===t =
Table 2

PARTIAL COMP.
PRODUCT INDEX

PARTIAL COMP.
PRODUCT INDEX

PARTIAL COMP.
PRODUCT INDEX

NO. NO. NO.
1 0 15 30 36 16
2 1 16 - 40 26
3 7 18 15 42 41
- 2 20 25 45 37
5 23 21 40 48 11
6 8 24 10 49 66
7 33 25 46 54 22
3 3 27 21 56 36
9 14 28 35 63 47
10 24 30 31 64 6
12 9 32 5 T2 17
14 34 35 56 81 28

H

Comp. index numbers of zero: 50, 51, 52, 53, 57, 58, 64, 73,
83, 100,

#
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numbers. Column 1 of Table 2 sets forth all partial producis
(a term applied to the product of any two units), while column
2 contains the corresponding compound index numbers. The
relation between the index numbers is such that the sum of the
simple index numbers of any two units is equal to the compound
index number of their product. Table 3 is really a re-arrange-
ment of Table 2, the numbers 0 to 66 (representing 67 divisions
on the index) being placed in column 1, and in column 2,
opposite to each number in column 1 which is a compound
index number, is placed the corresponding simple product.
Now, to take a very simple example, suppose the machine is
supplied with a formula-paper designed to cause it to evaluate
x for given values of a, b, ¢, and d, in the equation ab + cd = x,
and suppose we wish to find the value of x in the particular
case where a = 9247, b = 8132, ¢ = 21893, and d = 823.
The four given numbers are first transferred to the machine by
the key-board hereafter mentioned; and the formula-paper
causes them to be inscribed in four shuttles. As the shuttles of
the inner and outer co-axial shuttle-boxes are numbered con-
secutively, we may suppose the given values of a and ¢ to be
inscribed in the first and second shuttles respectively of the
inner box, and of b and d in the first and second shuttles re-
spectively of the outer box; but it is important to remember
that it is a function of the formula-paper to select the shuttles
to receive the Variables, as well as the shuttles to be operated
on, so that (except under certain special circumstances, which

#

Table 3
COMP. PARTIAL COMP. PARTIAL
INDEX NO. PRODUCT INDEX NO. PRODUCT
0 1 34 14
| 2 35 28
2 4 36 56
3 8 37 45
4 16 38 —
5 32 39 -
6 64 40 21
7 3 41 42
8 6 42 —
9 12 43 —
10 24 44 —
11 48 45 —
12 — 46 25
13 — 47 63
14 9 48 —
15 18 49 —
16 36 50 0
17 WL 51 0
18 — 52 0
19 — 53 0
20 — 54 —
2] 27 53 —
22 54 56 Ll
23 5 37 0
24 10 58 0
25 20 59 —
26 40 60 —
27 — 61 —
28 81 62 —
29 — 63 -
30 15 64 0
31 30 65 —
32 — 66 49
33 7

ﬂ—__
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arise only in more complicated formulae) any given formula-
paper always selects the same shuttles in the same sequence and
manner, whatever be the values of the Variables. The magni-
lude of a Variable only effects the type carried by its shuttle,
and 1in no way influences the movements of the shuttle as a
whole

The machine, guided by the formula-paper, now causes the
shuttle-boxes to rotate until the first shuttles of both inner and
outer boxes come opposite to a shuttle-race. The two shuttles
are then drawn along the race to a position near the index; and
certain slides are released, which move forward until stopped
by striking the type carried by the outer shuttle. The slides in
question will then have moved distances corresponding to the
simple index numbers of the corresponding digits of the
Variables 6. In the particular case under consideration, the
first four slides will therefore move 3, 0, 7, and 1 units re-
spectively, the remainder of the slides indicating zero by
moving 50 units (see Table 1). Another slide moves in the
opposite direction until stopped by the first type of the inner
shuttle, making a movement proportional to the simple index
number of the first digit of the multiplier &—in this case 14. As
the index 1s attached to the last-mentioned slide, and partakes
of its motion, the relative displacements of the index and each
of the four slides are respectively 3 + 14, 0 + 14, 7 + 14, and
| + 14 units (that is, 17, 14, 21, and 15 units), so that pointers
attached to the four slides, which normally point to zero on the
index, will now point respectively to the 17th, 14th, 21st and
I5th divisions of the index. Consulting Table 3, we find that
these divisions correspond to the partial products 72, 9, 27,
and 18. In the index the partial products are expressed mech-
anically by movable blades placed at the intervals shown in
column 2 of the third table. Now, the duration of the first
movement of any blade i1s as the unit figure of the partial
product which it represents, so that the movements of the
blades concerned in the present case will be as the numbers 2,
9, 7, and 8, which movements are conveyed by the pointers
to the mill, causing it to register the number 2978. A carriage
near the index now moves one step to effect multiplication by
10, and then the blades partake of a second movement, this
time transferring the tens’ figures of the partial products (i.e. 7,
0, 2, and 1) to the mill, which completes the addition of the
units’ and tens’ figures thus:

2978
7021

73188

the result being the product of the multiplicand 5 by the first
digit of the multiplier a. After this the index makes a rapid
reciprocating movement, bringing its slide into contact with
the second type of the inner shuttle (which represents the
figure 2 in the quantity @), and the process just described 1s
repeated for this and the subsequent figures of the multiplier a
until the whole product ab i1s found. The shuttles are after-
wards replaced in the shuttle-boxes, the latter being then
rotated until the second shuttles of both boxes are opposite
to the shuttle-race. These shuttles are brought to the index, as
n the former case, and the product of their Variables
(21893 x 823) is obtained, which, being added to the previous
product (that product having been purposely retained in the
mill), gives the required value of x. It may be mentioned that
the position of the decimal point in a product is determined by
special mechanism which is independent of both mill and index.
Most of the movements mentioned above, as well as many
others, are derived from a set of cams placed on a common
shaft parallel to the driving-shaft; and all movements so
derived are under the control of the formula-paper.

The ordinals in Table 1 are not mathematically important, but
refer to special mechanism which cannot be described in this
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paper, and are included in the tables merely to render them
complete.

The sum of two products is obtained by retaining the first
product in the mill until the second product is found—the mill
will then indicate their sum. By reversing the direction of
rotation of the mill before the second product is obtained, the
difference of the products results. Consequently, by making the
multiplier unity in each case, simple addition and subtraction
may be performed.

In designing a calculating machine it is a matter of peculiar
difficulty and of great importance to provide for the expeditious
carrying of tens. In most machines the carryings are performed
in rapid succession; but Babbage invented an apparatus (of
which I have been unable to ascertain the details) by means of
which the machine could ‘foresee’ the carryings and act on the
foresight. After several years’ work on the problem, I have
devised a method in which the carrying is practically in
complete mechanical independence of the adding process, so
that the two movements proceed simultaneously. By my
method the sum of m numbers of » figures would take 9m + n
units of time. In finding the product of two numbers of
twenty figures each, forty additions are required (the units’ and
tens’ figures of the partial products being added separately).
Substituting the values 40 and 20 for m and n, we get 9 x 40 +
20 = 380, or 94 time-units for each addition—the time-unit
being the period required to move a figure-wheel through
1 revolution. With Variables of 20 figures each the quantity »
has a constant value of 20, which is the number of units of time
required by the machine to execute any carrying which has not
been performed at the conclusion of an indefinite number of
additions. Now, if the carryings were performed in succession,
the time required could not be less than 9 + n, or 29 units
for each addition, and is, in practice, considerably greater.*

In ordinary calculating machines division is accomplished by
repeated subtractions of the divisor from the dividend. The
divisor 1s subtracted from the figures of the dividend repre-
senting the higher powers of ten until the remainder is less
than the divisor. The divisor is then moved one place to the
right, and the subtraction proceeds as before. The number of
subtractions performed in each case denotes the corresponding
figure of the quotient. This is a very simple and convenient
method for ordinary calculating machines; but it scarcely
meets the requirements of an Analytical Machine. At the same
time, 1t must be observed that Babbage used this method, but
found 1t gave rise to many mechanical complications.

My method of dividing is based on quite different principles,
and to explain it I must assume that the machine can multiply,
add, or subtract any of its Variables; or, in other words, that a
formula-paper can be prepared which could direct the machine
to evaluate any specified function (which does not contain the
sign of division or its equivalent) for given values of its
variables.

Suppose, then, we wish to find the value of p/q for particular
values of p and ¢ which have been communicated to the
machine. Let the first three figures of ¢ be represented by £, and
let A be the reciprocal of f, where A is expressed as a decimal
of 20 figures. Multiplying the numerator and denominator of
the fraction by A, we have (A4p)/(Aq), where Ag must give a
number of the form 100 . . . because Ag = ¢g/f. On placing the
decimal point after the unit, we have unity plus a small decimal.
Represent this decimal by x: then

p Ap

=™ _l_xﬂrAp(l + x)~1

Expanding by the binomial theorem

*For further notes on the problem of the carrying of tens, see
C. Babbage: ‘Passages from the Life of a Philosopher’, p. 114, etc.
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(1) ‘Z=Ap(l—x+x3—x3+x4-—x5—|—etc.),
or

2) f}’ — Ap(1 — 0)(1 + x3) (1 + x%) (1 + x*), etc.

The series (1) converges rapidly, and by finding the sum as far
as x'° we obtain the correct result to at least twenty figures;
whilst the expression (2) gives the result correctly to at least
thirty figures. The position of the decimal point in the quotient
is determined independently of these formulae. As the quantity
A must be the reciprocal of one of the numbers 100 to 999, it
has 900 possible values. The machine must, therefore, have the
power of selecting the proper value for the quantity 4, and of
applying that value in accordance with the formula. For this
purpose the 900 values of 4 are stored in a cylinder—the
individual figures being indicated by holes of from one to nine
units deep in its periphery. When division is to be performed,
this cylinder is rotated, by a simple device, until the number A4
(represented on the cylinder by a row of holes), which is the
reciprocal of the first three figures of the divisor, comes oppo-
site to a set of rods. These rods then transfer that number to the
proper shuttle, whence it becomes an ordinary Variable, and is
used in accordance with the formula. It is not necessary that
every time the process of division is required the dividing
formula should be worked out in detail in the formula-paper.
To obviate the necessity of so doing the machine is provided
with a special permanent dividing cylinder, on which this
formula is represented in the proper notation of perforations.
When the arrangement of perforations on the formula-paper
indicates that division 1s to be performed, and the Variables
which are to constitute divisor and dividend, the formula-paper
then allows the dividing cylinder to usurp its functions until
that cylinder has caused the machine to complete the division.

It will be observed that, in order to carry out the process of
division, the machine is provided with a small table of numbers
(the numbers A) which it js able to consult and apply in the
proper way. | have extended this system to the logarithmic
series, in order to give to that series a considerable convergency ;
and I have also introduced a logarithmic cylinder which has the
power of working out the logarithmic formula, just as the
dividing cylinder directs the dividing process. This system of
auxiliary cylinders and tables for special formulae may be
indefinitely extended.

The machine prints all results, and, if required, the data, and
any noteworthy values which may transpire during the cal-
culation. It may be mentioned, too, that the machine may be
caused to calculate and print, quite automatically, a table of
values-—such, for instance, as a table of logs, sines, squares, etc.
It has also the power of recording its results by a system of
perforations on a sheet of paper, so that when such a number-
paper (as it may be called) i1s replaced in the machine, the
latter can ‘read’ the numbers indicated thereon, and inscribe
them in the shuttles reserved for the purpose.

Among other powers with which the machine is endowed is
that of changing from one formula to another as desired, or
in accordance with a given mathematical law. It follows that
the machine need never be idle; for it can be set to tabulate
successive values of any function, while the work of the
tabulation can be suspended at any time to allow of the deter-
mination by it of one or more results of greater importance or
urgency. It can also ‘feel’ for particular events in the progress
of i1ts work-—such, for instance, as a change of sign in the value
of a function, or its approach to zero or infinity; and it can
make any pre-arranged change in its procedure, when any
such event occurs. Babbage dwells on these and similar points,
and explains their bearing on the automatic solution (by
approximation) of an equation of the nth degree;* but I have
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not been able to ascertain whether his way of attaining these
results has or has not any resemblance to my method of so
doing.

The Analytical Machine is under the control of two key-
boards, and in this respzct differs from Babbage’s Engine. The
upper key-board has ten keys (numbered O to 9), and 1s a
means by which numbers are communicated to the machine.
It can, therefore, undertake the work of the number-paper
previously mentioned. The lower key-board can be used to
control the working of the machine, in which case it performs
the work of a formula-paper. The key-boards are intended for
use when the nature of the calculation does not warrant the
preparation of a formula-paper or a number-paper, or when
their use is not convenient. An interesting illustration of the
use of the lower key-board is furnished by a case in which a
person is desirous of solving a number of triangles (say) of
which he knows the dimensions of the sides, but has not the
requisite formula-paper for the purpose. His best plan is to put
a plain sheet of paper in the controlling apparatus, and on
communicating to the machine the known dimensions of one
of the triangles by means of the upper key-board, to guide the
machine by means of the lower key-board to solve the triangle
in accordance with the usual rule. The manipulations of the
lower key-board will be recorded on the paper, which can then
be used as a formula-paper to cause the machine automatically
to solve the remaining triangles. He can communicate to the
machine the dimensions of these triangles individually by
means of the upper key-board ; or he may, if he prefers so doing,
tabulate the dimensions in a number-paper, from which the
machine will read them of its own accord. The machine is,
therefore, able to ‘remember’, as it were, a mathematical rule:
and having once been shown how to perform a certain cal-
culation, it can perform any similar calculation automatically
so long as the same paper remains in the machine.

It must be clearly understood that the machine is designed to
be quite automatic in its action, so that a person almost
entirely ignorant of mathematics could use it, in some respects,
as successfully as the ablest mathematician. Suppose such a
person desired to calculate the cosine of an angle, he obtains
the correct result by inserting the formula-paper bearing the
correct label, depressing the proper number-keys in succession
to indicate the magnitude of the angle, and starting the machine,
though he may be quite unaware of the definition, nature, or
properties of a cosine.

While the machine is in use its central shaft must be main-
tained at an approximately uniform rate of rotation—a small
motor might be used for this purpose. It is calculated that a
velocity of three revolutions per second would be safe; and
such a velocity would ensure the multiplication of any two
Variables of twenty figures each in about 10 seconds, and their
addition or subtraction in about three seconds. The time taken
to divide one Variable by another depends on the degree of
convergency of the series derived from the divisor, but 14
minutes may be taken as the probable maximum. When con-
structing a formula-paper, due regard should therefore be had
to the relatively long time required to accomplish the routine
of division; and it will, no doubt, be found advisable to use
this process as sparingly as possible. The determination of the
logarithm of any number would take two minutes, while the
evaluation of ¢" (for any value of n) by the expotential theorem,
should not require more than 13 minutes longer—all results
being of twenty figures.t

The machine, as at present designed, would be about 26 inches
long, 24 inches broad, and 20 inches high; and it would there-
fore be of a portable size. Of the exact dimensions of Babbage’s

*C. Babbage: ‘Passages from the Life of a Philosopher’, p. 131.
TThe times given include that required for the selection of the
Variables to be operated on.
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Engine I have no information; but evidently it was to have
been a ponderous piece of machinery, measuring many feet in
each direction. The relatively large size of this engine is doubt-
less due partly to its being designed to accommodate the large
number of one thousand Variables of fifty figures each, but
more especially to the fact that the Variables were to have been
stored on columns of wheels, which, while of considerable
bulk in themselves, necessitated somewhat intricate gearing
arrangements to control their movements. Again, Babbage’s
method of multiplying by repeated additions, and of dividing
by repeated subtractions, though from a mathematical point
of view very simple, gave rise to very many mechanical
complications.™

To explain the power and scope of an Analytical Machine or
Engine, I cannot do better than quote the words of the Countess
of Lovelace: ‘There is no finite line of demarcation which
limits the powers of the Analytical Engine. These powers are
coextensive with the knowledge of the laws of analysis itself,
and need be bounded only by our acquaintance with the latter.
Indeed, we may consider the engine as the material and mech-
anical representative of analysis, and that our actual working
powers in this department of human study will be enabled more
effectually than heretofore to keep pace with our theoretical
knowledge of its principles and laws, through the complete
control which the engine gives us over the executive manipu-
lations of algebraical and numerical symbols.’

A Committee of the British Association which was appointed
to report on Babbage’s Engine stated that, ‘apart from the
question of its saving labour in operations now possible, we
think the existence of such an instrument would place within
reach much which, if not actually impossible, has been too
close to the limits of human skill and endurance to be practi-
cally available’. ]

In conclusion, I would observe that of the very numerous
branches of pure and applied science which are dependent
for their development, record, or application on the dominant
science of mathematics, there is not one of which the progress
would not be accelerated, and the pursuit would not be
facilitated, by the complete command over the numerical
interpretation of abstract mathematical expressions, and the
relief from the time-consuming drudgery of computation,
which the scientist would secure through the existence of
machinery capable of performing the most tedious and complex
calculations with expedition, automatism, and precision.

Appendix 2
(Reprinted from Nature 81, 2070 (1 July 1909) pp. 14-15)

A NEW ANALYTICAL ENGINE

The April number of the Scientific Proceedings of the Royal
Dublin Society contains an interesting and very original paper
by Mr. Percy E. Ludgate on a proposed analytical machine.
Of all calculating machines, the analytical machine or engine
is the most comprehensive in its powers. Cash till reckoners
and adding machines merely add or add and print results.
Arithmometers are used for multiplying and dividing, which
they really only accomplish by rapidly repeated addition or
subtraction, with the exception alone, perhaps, of the arith-
mometer of Bollée, which, in a way, works by means of a
mechanical multiplication table. Difference engines originated
by Babbage produce and print tables of figures of almost any
variety, but the process is one of addition of successive differ-
ences. The analytical engine proposed by Babbage was intended

*See Report Brit. Assoc., 1878, p. 100.
tR. Taylor’s ‘Scientific Memoirs’, 1843, vol. iii., p. 696.
{Report Brit. Assoc., 1878, p. 101.
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to have powers of calculation so extensive as to seem a long
way outside the capacity of mere mechanism, but this was to
be brought about by the use of operation cards supplied by the
director or user, which, like the cards determining the pattern
in a Jacquard loom, should direct the successive operations of
the machine, much as the timing cam of an automatic lathe
directs the successive movements of the different tools and
feeding and chucking devices. However elaborate the mechan-
ism of Babbage, if completed, might have been, the individual
elements of operation would, so far as the writer has been able
to understand it, have been actually operations of addition or
subtraction only, and, with the exception of the method of
multiplication created by Bollée, the writer does not recall any
case in which mechanism has been used to compute numerical
results except by the use of the processes of addition or sub-
traction, simple or cumulative. Of course, harmonic analysers
and other instruments depending on geometry are not included
in the category of machines which operate on numbers.

The simplicity of the logarithmic method of multiplying
must have made many inventors regret the inherent incom-
mensurability of the function to any simple base, or, if com-
mensurability is attained for any particular number and its
powers by the use of an incommensurable base, the incom-
mensurability of the corresponding logarithms of numbers
prime to those first selected. On this account the writer has
always imagined that the logarithmic method was unsuited to
mechanism, or, if applied at all, could only be so applied at the
expense of complication, which would more than compensate
for the directness of the process of logarithmic multiplication.

Mr. Ludgate, however, in effect, uses for each of the prime
numbers below ten a logarithmic system with a different
incommensurable base, which as a fact never appears, and is
able to take advantage of the additive principle, or, rather, it is
so applied that the machine may use it. These mixed or Irish
logarithms, or index numbers, as the author calls them, are
very surprising at first, but, if the index numbers of zero be
excepted, it is not difficult to follow the mode by which they
have been selected. The index numbers of the ten digits are as
follows:

Digit 01 2 3 4 5 6 728 9
Index number 50 6 1 7 2 23 B 33 3 14

When two numbers are to be multiplied, the index numbers of
the several digits are mechanically added to the index numbers
of each of the digits of the other, and, the process of carrying
the tens being carried on simultaneously, the time required is
very small. For instance, the author gives as an example the
multiplication of two numbers of 20 digits each, which will
require 40 of these additions, which he shows will require 93
time units if a time unit is one-tenth of the time of revolution
of a figure wheel.

Unfortunately, while the principle on which the proposed
machine is to work is described, only the barest idea of the
mechanical construction is given, so that it is difficult to judge
of the practicability of the intended construction. Whatever
this may be, the originality of the method of mixed commen-
surable logarithms to incommensurable bases seems to the
writer so great and the conception so bold as to be worthy of
special attention.

Division has hitherto always been effected by the process of
rapid but repeated subtraction, following in this respect the
method practised with pencil and paper. Having discovered
how to harness the logarithm to mechanism, Mr. Ludgate
would, it would be expected, have managed to effect division
by a logarithmic method, and possibly he could have done so,
but here again he has left the beaten track, and by his ingenuity
has made division a direct, and not, as hitherto, an indirect or
trial-and-error process. Starting with a table of reciprocals of
all numbers from 100 to 999, which in a mechanical form is
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intended to be stored in the machine, he imagines both
numerator and denominator of the required fraction p/g to
be multiplied by the reciprocal 4 of the first three digits of ¢
so as to become (Ap)/(Aq). Ag must, then, in every case begin
with the digits 100, and it may be written 1 + x, where x is a
small fraction. Then

g —Ap(l — )1 +x) A + x5 + ...
a highly convergent series of which five terms will give a result
correct to twenty figures at least, and so division 1s intended to
be effected by a process of direct multiplication.

Until more detail as to the proposed construction and
drawings are available it is not possible to form any opinion as
to the practicability or utility of the machine as a whole, but

it 1s to be hoped that if the author receives, as he deserves,
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