2
3

Percy Ludgate’s Logarithmic Indexes
Brian Coghlan
A. Ludgate’s logarithmic indexes
Percy Ludgate invented his own logarithmic indexes for multiplication [1]

 REF _Ref39511826 \r \h
[2]

 REF _Ref39513197 \r \h
[3], an entirely new result in 1909. These are now called Irish Logarithms, a discrete analogy to real logarithms where log(j*k) = Iog(j) + log(k). For two operands ZJ and ZK the index numbers ensure ZY = ZJ*K = ZJ + ZK, for example Z3 = 7, Z5 = 23, Z15 = 30. The largest ZJ*K is Z7*7 = 66. C.V.Boys said: “Ludgate … uses for each of the prime numbers below ten in a logarithmic system with a different incommensurable base, which as a fact never appears” [2], i.e. each ZX = logNX(X) has a different (invisible) base NX. Ludgate almost certainly did not derive his indexes from number theory, either finding them empirically or by a systematic “method”, such as that in Figure 1.
Ludgate’s proposed logarithmic indexes are amenable to construction by a systematic method.

For an example of how these are used in calculations, see Andries de Man’s educational emulator [5], and his citations of similar indexes in the literature [6] cited below:

(1)
Jacobi/Zech indexes (1846/1849 [7]), which can be derived from number theory. For example Z1 = 0, Z2 = 1, Z3 = 18, Z5 = 44, Z7 = 7. An alternative is Z1 = 0, Z2 = 1, Z3 = 8, Z5 = 44, Z7 = 27. In both cases the largest ZJ*K is Z5*5 = 88.

(2)
Remak indexes (Von K. Hoecken 1913 [8]), Z1 = 0, Z2 = 1, Z3 = 13, Z5 = 21, Z7 = 30, where the largest ZJ*K is Z7*7 = 60.

(3)
Korn indexes (Von K. Hoecken 1913 [8]), Z1 = 0, Z2 = 8, Z3 = 13, Z5 = 1, Z7 = 30, where the largest ZJ*K is Z7*7 = 60.

Ludgate said: “The index numbers (which I believe to be the smallest whole numbers that will give the required results)”. His focus on small numbers makes it possible Ludgate knew of Jacobi/Zech indexes, which were in use in astronomy. Remak and Korn indexes give smaller numbers, but were reported after Ludgate had published. Small numbers are important to minimize the length of any mechanism that is used to convert to or from the logarithmic indexes. McQuillan [11]

 REF _Ref40271475 \r \h
[12] has shown that better indexes can be readily be computed using modern machinery.
Ludgate proposed logarithmic indexes with the smallest ZJ*K then known.

As happens surprisingly often with novel inventions, in the same year as Ludgate’s 1909 paper a sliderule with Jacobi indexes was designed by Prof.Schumacher of Germany [9] and later manufactured as the Faber Model 366 [10].
Ludgate’s indexes can be derived by an algorithm. He likely did this, but thought of it as a “method”. The method can be expressed as a simple algorithm, see below, which has proven Irish Logarithms exist over the range 0-99, perhaps further.
Ludgate’s proposed logarithmic indexes are amenable to algorithmic construction.
Ludgate’s logarithmic indexes have been shown to exist for 0-99.
B. Algorithm to derive Irish Logarithms
Ludgate’s indexes can be derived by algorithm. He likely did this, but thought of it as a “method”. The method of Figure 1 can be expressed as a simple algorithm, for example in Python as in Figure 2. Executing this algorithm yields identical indexes to those given in Tables 1, 2 and 3 of Ludgate’s 1909 paper, see Figure 3.

Irish Logarithms might exist for the range up to any N, not just for 0-9 as in Ludgate’s paper. Certainly they have been shown to exist for 0-99 by extending the rather inefficient algorithm of Figure 2 with a basic Sieve of Eratosthenes to generate the seed prime numbers. Beyond that a more efficient algorithm would be necessary, or ideally a number-theoretic proof.
[image: image1.png]Allthe se products derive ultimately from primes. so start with first prime J=1 by assigning Z,=0)Brian Coghlan 2020
Index [0]i5 now used. so for next prime p=2 the indexes Z,+[0] must be free
Allindexes above 0 are free, 50 assign Z,=1
Then recursively for al products < 9°9=1 for which an index exits, assign a logarithmic index 2. =Z, + Z¢
z 42,7141
s 52435
Indexes [1,2.3] are now used for 1<Y<g
So for next prime p=3 the indexes Z+[0,1.2,3] must be free

Then recursively for all products < 9°3=81 for which an index exists, assign a logarithmic index Z ¢

z +2,=T+1=8 s

70Ty =2y42,=T48=15 42

R W Tezyez s 2,843=11

23,7 42542, =3414=1T 24Ty T+ 2= 14228

Indexes [1.2.37 8.14] are now used for 1<Y<9

So for next prime p=5 the indexes Z+[0,1.2.3.7,8,14] must be free

‘The next free index for which this is 50 is Z;=23+[12.3.7 8.14] i.e. 23.24,2526,30,31 37, the indexes are allfree, so assign Zs=23
Then recursively for all products < 9°3=81 for which an index exists. assign a logarithmic index Z ¢

2,472,72:+2,23+1=24 = 42,2347

2,47 4=2,+2,=23+2346 -

7,77 472 42,=23+14=37

Indexes [1,2.3.7 8.14,23] are now used for 1<Y<9

So for next prime p=7 the indexes Z,+[0,1.2,3.7.8.14,23] must be free

‘The next free index for which this is 50 is Z,=33+[12.3.7.8.14,23] i e 33,34.35,36.404147,56, the indexes are all free. so assign Z,=33
‘Then recursively for all products < 9°3=81 for which an index exists, assign a logarithmic indexZ y = Z, +Z,.

2,72, 242,33+1=3 L2 LT 2572, T 42,73342=35

L2, 7,77, 247272 42,73343366

Z =

o for 148, indexes [1.2.3,7.8,14.23,3] are now used

‘The only unused integer is Y=0, and although log(0) does not exist. here multiply by 0 must be valid, so Z+[1,2.3.7.8,14 23.33] must be free
‘The next free index for which this is 50 is Z,=50+[12.3.7 8.14,23.33] ie 50,5152,53.5758,64.73,83 the indexes are all free, so assign Z,=50
‘Then recursively for all products < 9°3=81 for which an index exists, assign a logarithmic indexZ = Z, +,c

20y72,4,725+2,750+1=51 42,=5047=57 2020 T #2,7504252
ZeZyaZ 2, =504235T3 +Z,=5048=58 ZZonZ 1 Z,=5043383

20575 =25+2,=50+3=53 - 20770y 2 #Z,=50450=100

Figure 1 Systematic method to derive Ludgate’s simple index numbers
For all products Y = (1<J<9) * (1<K<9) assign logarithmic index numbers ZY = ZJ*K = ZJ + ZK
Image reproduced courtesy The John Gabriel Byrne Computer Science Collection [4]
[image: image2.png]#1/usr/bin/env python

import sys

initialise variables
-1]%200 # table of complex indexes
PP=[-1]%200 # table of partial products
i=o0;
for p in (1,2,3,5,7,0):
if Z[pl==-1: # prime not indexed yet
free=False
while free—False and 1<=100:
free=True
for 3 in (1,2,3,4,5,6,7,8,9):
if free—rTrue:
if Z[31<>- # for existing indexes
for k in range (1,100):
if Z[K]=(i+Z[3]): # check if complex index exists
free=False
1=141
ree=True: # OK, found a desired free set of indexes
zlpl=t # create new simple index
BR[i]=p # create new partial product
1=141
for 3 in (1,2,3,4,5,6,7,8,9,0;
if Z[3]<>-1: # multiplicand simple index exists
for k in (1,2,3,4,5,6,7,8,9,0):
if Z[K]<>-1: # multiplier simple index exists
if PP[Z[3]+Z[K]]==-1: # product not indexed yet
1f Z[3*Kk]=-1
Z[I*K]=Z[I]+Z[K] # create mew complex index
PP(Z[3]+Z[K]]=3*k # create new partial product

Figure 2 Python algorithm to derive Ludgate’s simple index numbers
Image reproduced courtesy The John Gabriel Byrne Computer Science Collection [4]
[image: image3.png]final Ludgate Simple Index for each Unit (Table 1):

0: 50

1:

o

2:

1

3

7

a:

2

5

23

final Ludgate Complex Index for each Partial Product

10
15: 30
36: 16

2:

16

10:

1
1
26

3

18

42:

final Ludgate Partial

0: 1

10: 24
20:

30: 15

21

o

1:

1

21:

51
a1

51t

61

71

81

51t

2
18
27
30
22

o

2:

12

22:

32
a2

52t

62

72:

82

52:

7
15
a1

a:
20
a5:

2
25
37

5:
21
8:

23
20
1

2
1

6:

5:

s
10
66

Product for each Complex Index

1

3
13
23:
33
13
53:
6
73:
83
53:

s

a:
14
2a:
31
n
5a:
61
7a:
84
sa:

16

s
10
14

1

3

5:

32
18

28

Figure 3 Results from running the algorithm of Figure 2
Image reproduced courtesy The John Gabriel Byrne Computer Science Collection [4]
References,
[1] Percy E.Ludgate, On a Proposed Analytical Machine, Scientific Proceedings of the Royal Dublin Society, Vol.12, No.9, pp.77–91, 28-Apr-1909.

[2] C.V.Boys, A new analytical engine, Nature, Vol.81, pp.14-15, Jul-1909, see elsewhere in the Literature category of this catalog.
[3] Percy E.Ludgate, Automatic Calculating Machines, In “Handbook of the Napier Tercentenary Celebration or modern instruments and methods of calculation”, Ed: E.M.Horsburgh, 1914
[4] Trinity College Dublin, The John Gabriel Byrne Computer Science Collection. Available: https://scss.tcd.ie/SCSSTreasuresCatalog/
[5] Andries de Man, Irish Logarithms Animation. Available: http://ajmdeman.awardspace.info/t/irishlog.html
[6] Andries de Man, Irish Logarithms, Available: https://sites.google.com/site/calculatinghistory/home/irish-logarithms-1
and https://sites.google.com/site/calculatinghistory/home/irish-logarithms-1/irish-logarithms-part-2-1
[7] Wikipedia, Zech’s Logarithm, Available: https://en.wikipedia.org/wiki/Zech’s_logarithm
[8] K. Hoecken, “Die Rechenmaschinen von Pascal bis zur Gegenwart, unter besonderer Berücksichtigung der Multiplikationsmechanismen”, Sitzungsberichte Berliner Math. Gesellsch.13, pp.8–29, February 1913.

[9] Dr. Joh. Schumacher, Ein Rechenschieber mit Teilung in gleiche Intervalle auf der Grundlage der zahlentheoretischen Indizes. Für den Unterricht konstruiert, München, 1909.

[10] Dieter von Jezierski, Detlef Zerfowski, Paul Weinmann: A.W. Faber Model 366 - System Schumacher. A Very Unusual Slide Rule, Journal of the Oughtred Society, pp.10-17, Vol.13, No.2, 2004. Available: http://osgalleries.org/journal/displayarticle.cgi?match=13.2/V13.2P10.pdf also at: https:/scss.tcd.ie/SCSSTreasuresCatalog/miscellany/TCD-SCSS-X.20121208.002/
[11] David McQuillan, Percy Ludgate's Analytical Machine, Available: http://fano.co.uk/ludgate/
[12] David McQuillan, The Feasibility of Ludgate's Analytical Machine, Available: http://fano.co.uk/ludgate/Ludgate.html

Ludgate-LogarithmixIndexes-20220324-1517.doc
Ludgate-LogarithmixIndexes-20220324-1517.doc

