AccessionIndex: TCD-SCSS-T.20251002.001

Accession Date: 2-Oct-2025 Accession By: Dr.Brian Coghlan

Object name: Fairchild resistor-transistor (RTL) chips

Vintage: 1961

Synopsis: First digital logic family to be produced as monolithic integrated circuits.

Description:

Jean Hoerni and Jay Last proposed resistor-transistor logic (RTL) [1], initially using discrete devices, but in 1961 they became the first digital logic family to be produced as a monolithic integrated circuit when Fairchild Semiconductor began manufacturing devices that used this technology as their µL900 series [2].

By 1966 the Fairchild RTL chips [3] included:

μL900	buffer-inverter	
μL901	3-gate counter adapter	
μL902	SR flip-flop	
μL903	3-input NOR gate	
μL904	half adder	
μL905	half shift register with inverter	
μL906	half shift register without inverter	
μL907	4-input NOR gate	
μL908	low-power adder	
μL909	low-power buffer	
μL910	dual low-power NOR gate	
μL911	4-input low-power NOR gate	
μL912	low-power half adder	
μL913	low-power D flip-flop	
μL914	dual 2-input NOR gate	
μL915	dual 3-input NOR gate	
μL921	low-power NOR gate expander	
μL923	JK flip-flop	
μL926	buffered J-K flip-flop	
μL927	quad inverter	
μL938	dual low-power 2-input buffer	
μL940	low-power JK flip-flop	
μL970	dual half adder	
μL991	quad 2-input NOR gate	
μL992	quad 2-input NOR expander	
μL993	quad 2-input NOR gate and dual 2-input NOR expander	
μL994	dual J-K flip-flop	
μL995	dual buffer and dual 3-input NOR expander	
μL996	hex inverter	
μL997	4-bit shift register	

RTL circuits were very simple, see Fig.1. The input resistor in series with a transistor base input enabled the RTL logic 1 input voltage of about 3.5V to cause the transistor base voltage to saturate at about 0.7V and hence turn ON the transistor. With two or more input resistor-transistor couplets the circuit became an active-high NOR gate or

active-low NAND gate, where the number of inputs was limited only by the leakage current of the transistors when OFF. In discrete form the big advantage of RTL was its minimal use of (then expensive) transistors, but in monolithic form this advantage was lost. The disadvantages were the power dissipation when the transistor was switched ON, and the limited fan-in of about three inputs before loss of noise immunity. Nevertheless, RTL integrated circuits were in 1961 designed into the guidance computer of the Apollo spacecraft, which first flew a remarkably short time later in 1966. But by then RTL had been quickly succeeded by diode—transistor logic (DTL), and then transistor—transistor logic (TTL).

The RTL chips in this Collection, see Figures 2 and 3, were purchased in the late 1960s by Brian Coghlan for a proposed extremely simple navigation computer (a basic Turing machine, with storage on audio cassette tape using telecomms MFC coding), for use on a proposed sailing of a classic 6-metre yacht from Dublin in Ireland back to Perth in Western Australia. In the event he went to London to undertake a PhD and neither of these proposals were realised. However, there was a sequel. As a result of the burden of calculating results, the ideas were remembered, so a CPU with a PC + stack + branching logic + arithmetic chip was prototyped, which worked so well it engendered two really useful machines [4].

Many thanks to Brian Coghlan for donating these items.

The homepage for this catalog is at: https://www.scss.tcd.ie/SCSSTreasuresCatalog/ Click 'Accession Index' (1st column listed) for related folder, or 'About' for further guidance. Some of the items below may be more properly part of other categories of this catalog, but are listed here for convenience.

Accession Index	Object with Identification
TCD-SCSS-T.20251002.001	Fairchild resistor-transistor (RTL) chips. First digital logic
	family to be produced as monolithic integrated circuits.
TCD-SCSS-T.20251002.001.01	5 x Fairchild μL914 dual 2-input NOR gate.
TCD-SCSS-T.20251002.001.02	14 x Fairchild μL923 JK flip-flop.
TCD-SCSS-T.20250916.001	Intel 4004 microprocessor and associated chips. The first
	commercially successful microprocessor. 1971.
TCD-SCSS-T.20250918.001	Intel 8008 microprocessor and associated chips. Intel's first
	and very early 8-bit microprocessor.
TCD-SCSS-T.20250918.003	Intel 8080 microprocessor and associated chips. Intel's
	second and very successful early 8-bit microprocessor. 1972.
TCD-SCSS-T.20250918.004	Intel 8086 microprocessor and associated chips. Intel's very
	successful early 16-bit microprocessor. 1978.
TCD-SCSS-T.20250918.005	Intel MCS-48 microcontrollers and associated chips. Intel's
	8048, 8035 and 8748 microcontroller series. 1976.
TCD-SCSS-T.20250918.006	Intel MCS-48 microcontrollers and associated chips. Intel's
	8051, 8052, 8751, 8752, 8031 and 8032 and 8044
	microcontroller series. 1980.
TCD-SCSS-T.20250918.007	Zilog Z80 microprocessor and associated chips. Zilog's Z80
	superset of the Intel 8080 microprocessor. 1976.
TCD-SCSS-T.20250919.001	Motorola MC14500 microprocessor and associated chips. A
	very interesting 1-bit microprocessor designed for industrial
	control applications. 1977.
TCD-SCSS-T.20250919.003	MOS Technology 6500 microprocessor and associated chips.
	A highly successful early 8-bit microprocessor family. 1975.
TCD-SCSS-T.20250919.005	Motorola 6800 microprocessor and associated chips. An
	early big-endian 8-bit microprocessor. 1974.
TCD-SCSS-T.20250919.007	Motorola 68000 microprocessor and associated chips. A
	complex instruction set big-endian 32-bit microprocessor.
FGD GGGG F 20250021 001	1979.
TCD-SCSS-T.20250921.001	Signetics 2650 microprocessor. An early 8-bit
	microprocessor designed by John Kessler modelled on the
TCD CCCC T 20250021 002	IBM 1130. 1975.
TCD-SCSS-T.20250921.003	Signetics 8X300. An early 8-bit microprocessor designed by SMS for signal processing. 1975.
TCD-SCSS-T.20250922.001	Intel C3000 bit-slice chipset. Intel's bipolar microcoded bit-
1CD-SCSS-1.20230922.001	slice processor. 1973.
TCD-SCSS-T.20250922.002	AMD 2900 bit-slice chipset. AMD's very successful bipolar
1CD-3C33-1.20230922.002	microcoded bit-slice processor. 1975.
TCD-SCSS-T.20250922.003	Monolithic Memories 6700 bit-slice chipset. A bipolar
100 0000 1.20200722.003	microcoded bit-slice processor. 1974.
TCD-SCSS-T.20251001.001	InMOS Transputers and associated chips. Very interesting
100 0000 1.20201001.001	parallel processing chips comprising RISC-style stack-
	oriented CPU, memory, 20Mbps serial links and a realtime
	offences of o, momory, zontops soffer miks and a realtime

	embedded kernel based on CSP process calculus. 1984.
TCD-SCSS-T.20251002.002	Motorola diode-transistor (DTL) chips. Second generation of
	monolithic digital logic integrated circuits. 1962.
TCD-SCSS-T.20251002.003	Texas Instruments 7400 series transistor-transistor (TTL)
	chips. Medium-scale-integration (MSI) logic. 1963.
TCD-SCSS-T.20251002.004	UV-erasable programmable read-only memory (EPROM)
	chips. Non-volatile memory for software and data storage.
	1971.
TCD-SCSS-T.20251002.005	Static random-access memory (SRAM) chips. Memory that
	does not require regular refresh.
TCD-SCSS-T.20251002.006	Dynamic random-access memory (DRAM) chips. Memory
	that requires regular refresh. 1970.
TCD-SCSS-T.20251002.007	Miscellaneous digital computer and logic chips. Sundry
	monolithic digital integrated circuits that are not members of
	the other chip families in this catalog. 197x.
TCD-SCSS-T.20251002.008	Miscellaneous analog chips. Sundry monolithic and hybrid
	analog integrated circuits. 197x.
TCD-SCSS-T.20251002.009	Programmable logic chips. PAL, GAL, etc, integrated
	circuits that provide programmable logic. 1978.
TCD-SCSS-T.20251003.001	Early calculator chips. Integrated circuits for early desktop
	and hand-held calculators. 1971.
TCD-SCSS-T.20251005.001	Fairchild PPS25 microprocessor and associated chips.
	Fairchild's first and very early 4-bit microprocessor. 1971.
TCD-SCSS-T.20251005.002	Fairchild F8 microprocessor and associated chips. Fairchild's
	earliest 8-bit microprocessor. 1975.
TCD-SCSS-T.20251006.001	National Semiconductor's COP microprocessors and
	associated chips. NatSemi's earliest microprocessors. 197x.
TCD-SCSS-T.20251006.002	National Semiconductor's SC/MP microprocessors and
	associated chips. NatSemi's earliest 8-bit microprocessors.
map adda macarias i saa	1976.
TCD-SCSS-T.20251006.003	National Semiconductor's 32000 series microprocessors and
	associated chips. NatSemi's 32-bit microprocessors, the first
	with virtual memory. 1981.

References:

- 1. Wikipedia, *Resistor–transistor logic*, see: https://en.wikipedia.org/wiki/Resistor%E2%80%93transistor_logic Last browsed to on 2-Oct-2025.
- 2. Tekwiki, Fairchild μL900 series, see: μL900 buffer-inverter: https://w140.com/tekwiki/wiki/Fairchild_%CE%BCL900 μL914 dual 2-input NOR gate: https://w140.com/tekwiki/wiki/Fairchild_%CE%BCL914 μL923 J-K flip-flop: https://w140.com/tekwiki/wiki/Fairchild_%CE%BCL923 Last browsed to on 2-Oct-2025.
- 3. Fairchild, Fairchild Semiconductor Integrated Circuits, see:

 https://treasures.scss.tcd.ie/hardware/TCD-SCSST.20251002.002/FairchildSemiconductor-IntegratedCircuitsCatalogue-19661632a-OCR.pdf
 Last browsed to on 2-Oct-2025.
- 4. Brian Coghlan and Graeme Taylor, *Autograph digitiser/processors*, see: *Mk.1*: https://treasures.scss.tcd.ie/hardware/TCD-SCSS-T.20251002.002/Autograph-Mk1.pdf *Mk.1*: https://treasures.scss.tcd.ie/hardware/TCD-SCSS-T.20251002.002/Autograph-Mk2.pdf Last browsed to on 2-Oct-2025.

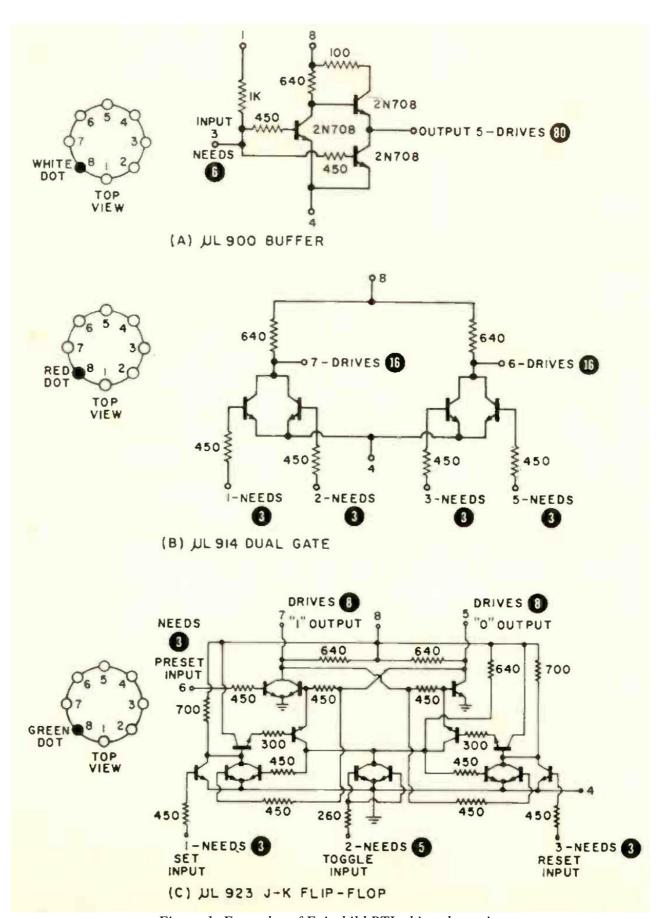


Figure 1: Examples of Fairchild RTL chip schematics

Figure 2: Fairchild μL914 chips front view.

Figure 3: Fairchild μL923 chips front view.