P800OM Programmer’s Guide 2
Volume |: DOM

&4 publication of

Philips Data Systems B.V.

Apeldoorn, the Netherlands

Publication number 5122 991 27373

June, 1977

Copyrignt (C) by Philips Data Systems B.V., 1977

All righte strictly reserved. Reproduction or issue to
third parties in any form whatever is not permitted

without written authority from the publigher.

Frinted in the Netherlands.

IT

Preface

Thig iz the firet of a five-volume set dealing with the Disc
Operating System (ncn-real time and real time) for the PBOOM
geries. It describes the Disc Operating Monitor.

The other volumes of this set are:
II: Instruction Set

IIT: Software Processors

IV: Disc Real Time Monitor

Ve Multi-Application Monitor

Other books pertaining to the PBOOM series are:

P852M System Handbook

P856M/PE5TM Handbook

PBOOM Operator's Guide

P300OM Interface and Ingtallation Manual

PBO0M Software Reference Data

PAOOM Data Communication User Manual

Great care has been taken to ensure that the information contained
in this manual is accurate and complete. However, should any errors
or omissions be discovered, or should any user wish to make a
suggestion for improving this manual, he is invited to send his

comments, written on the sheet provided at the end of this book, to:

885-D0OC.
at the address on the opposite page.

Table of contents:

Intrﬂduﬂtiﬂn]] L L] L] L] L * L] L L] L] L] - L Ll Ll L]

Chapter 1: Principles of Operation . . « .

Chapter 2: Memory Organization + « « o & « & &

Chapter %3: Interrupt System « + + o o s o o & &

Hardware Interrupt LInee + « « + o o o o n o o+ &
Software Priorifty Levels « « o & o o 5 s & & »
Biﬁpatch&r L] - - - L] [- " [] - - L] - L] L] L] L] L] L]

Bhfack & « o & & % @ a4 w oa a w4 % 4 @ o W o F oa

Chapter 4: Programming . « s « + s+ + & 4 & » &

Interrupt Boutines « +« o o o o & « o o & & & & &
Software Level ProgTrams .« « « & s = & = = % s &
Level 63: Idle TaBk & o s o & & s m & s » ' s
Schedulsd Labels + + & « o = & » = = = = &
Program Segments and Overlay Stiructure (DOM)
Catalogued Procedures (DOM) & v « + o« o = & s
Job Parameter Table {hOM} . s s e o= ow s s w o

Chapter 5: Disc Organization « « s &« = = & =«

HBEotorE we = e ow e e wow B @ E e ow wos o w
File® .+ o o o o & s 5 5 s s = s s = s« s = =
Access Modes .« .« o & & & & & & s & & & s +
HAREOM v v v om0 ;o cycmrm e @t cei s, & B A
Segquential .+ + + 4 4 4 2 s s s =2 o= = o+ s
Record Format . pepmeen w @ sm IminEaush B o B
Special Records +« + + « o + & ¢ o & » & =
File Types I E
Load Module Size .« o 2 o 2 = & = = & # 4 &

Page

.o s e s 11
.o e e i1
. oe s ow o 12
s o8 o s 13
P T T 13

15
 w R W 15
“ o8 owoa 16
17
18
21
23
27

34

R 35
@ a s e 37

Dige Structure . + « « « = +

Catalogue and Library Structure

Catalogue Structure
Directory Structure
DOM System Disc Structure .

Chapter 6: Input/Output . . .
DOM Logical Files and Tnite .
File Codes « o« 4 & o o = = = =

Aocess Modes .o v & & & & 5 +

Chapter 7: Data Management .

Sequential Access Method . . .
Direct Accees Method

Chapter 8: OQOperation . . +

Loading Bootstrap and IPL . .
Initial Program Loader (IPL) .
Starting a Session or Job .
Batch Processing + « « «

Changing a Disc Pack . . .

-

-

L]

Copying or Updating the System Disc

Syetem Messages .« + &+ &+ s = =

Chapter 9: DOM CCI Control Commande

Table of CCI commands . « «

Chapter 11: DOM Operator Control Messages

-

Table of ﬂperafar Control Messages

Chapter 13: Monitor Requests

Page

40
40
40
42
45

47
48
51
52

53
23
62

67
67
69
69
72
73

73
76

T3
BO

117
117

123

L,
EPPEHDIE§ T S - A=1

Appendix A: System Generation . . « &« & & & & « & & & A=3

Appendix B: PremarTk « & & & @ % e & & & @ G e d e ow ow s A=39
Digo BPremarls: & & & & 50050 & @ § 8 WO @ W 9 e WE o O ou A=39
Appendix C: Peripheral Inout/Output o o s o o o o & ¢ o A-41
Appendix D: Control Unit Status Word Configuration . . . 4-49
Appendix E: PBSZM Footsfrap .+ + « ¢ & o o o s & = s & A-51

Appendix F: Control Commands . - « - « & = + & = = = = = A-57

Introduction

The Disc Operating Monitor {DOM) is used in a non-real time dise

system and is intended mainly as a tool for program development.
Communication with the system normally takes place via the opera-
tor's typewriter by means of a comprehensive set of control com-
mands, more or less as in time sharing, but not only disc siorage
but aleo the other peripherals in the configuration may be used
without restriction.

This monitor allows the user to process and maintain on disc all
kinds of user data, such as programs in source, object and load
format as well as various files. This c¢an be done in interactive
as well as in batch processing mode.

A1l syetem components, including processors, are disc resident.

The scheduled label feature allows some form of multiprogramming.

1 Principles of Operation

With the Disc Operating Monitor, there are two modes of operation:

- conversgational, working in sessions

- batch processing, working in jobs.

A sessgion is opened when the user ftypes in his user identification,
in reply to the meszage USERID:, which iz output after the system
has been loaded or after a previous gession or Jjob has been closed.
The uger may then decide on batch processing or conversational

mode .

The user identificaftion is an individual code name for each user,
through which he gets access to the system and to his own library
files. The ugser identification must have been declared previgusly
and is then stored by the system in a catalogue on the disc. Thus,
only those users whose identification is known to the system can
accesse 1t. The system itpelfl is also considered as a user, with
uger ldentification SYSTEM, with an entry in the disc catalogue
(the first entry) and with its own library, i.e. the gystem soft-

ware components.

The user communicates with the system through control commands
which are normzlly typed in on the operator's typewriter in con-
versational mode, a card reader or punched tape reader in case of
batch preocessing.

By means of thesze commandg, the uszer may create files, call

procegsors, handle his library, delete files, etec.

Per uszer there_is one library on dige, pointed to by the user
identification entry in the disc catalogue. All his permanent
fileg are gtored in this library, which is located on one disc
only, i.e. the disc which contains the directory for that uszer.
This implies that one uzer cannot have his files stored on several
disecs, unless, of course, he makes usge of several uger identifi-

cationa. However, a user can have access to the system library and

to other user libraries by specifying the user identification of
the user of those libraries, but he can only read the data in

thege files, not write in them.

The filea contained in a Library may be of several types: source
program files, object modules, load files (programs ready for
execution) and files not belonging to any of these types, e.g.

fileg created by user Programg.

During a session the user will, outeide his library, also need
temporary storage space on the disc, either for the processors
which he activatees through his control commands or for his own
programs. This storage space is always allocated to him cn the
game disc on which his library is lccated.

Files created during a session are always considered temporary.

If the user wantes to make them permanent, he must give a specific
control command (KPF: Keep File) to have the file stored in his
library. Temporary files which are not kept in a library with this
control command are automatically deleted at the end of a segsicn

or by specific other commands, such as SCR (Scratch).

The allocation of disc storage space takes place dynamically, fer
library files as well as temporary files. A disc is divided inte
granules, areas of B sectors (one sector = 200 words) and the
monitor handles the allocation of these granules to the user's
files, when he is creating temporary files. For this purpose, the
monitor keeps a table of the granules, to which filee they belong
and which oneg are gtill available for allocation. On each disc,
it also maintaine a granule table for that disc.

These tables are updated each time a user gives a command to keep
or delete a file. By means of the control commands the user can
handle hig files and library, call processors to update, assemble,
compile, link-edit and debug his programs and he may execute them.
In his programs the user may ask the monitor to perform certain
functions by means of monitor reguest, which may be coupled to so-
called echeduled labels to achieve a form of multi-tasking.

{-:I.; 1#-}.-‘:{ L ermrraaiiad
AL predlios

At the end of a sesaion, the user must type in BYE to close

his session. After this the system types out USERID: again

and waits for the next session or job with the same or an-

other user. In batch processing, the commands are procesged
sequentially and automatically until a program

itself asks for operator intervention or until an error occurs, in
which case the moniter locks for a new Jjob or until 2 command is
given to indicate the end of bateh processing (BYE).

It is possible to switch from batch to conversational mode or vice
veraza during proceseing, the first choice of mode being made at the
beginning of a segsion. If batch processing is chosen, the first
command must be JOB.

An interesgting feature of the aystem are the catalogued procedures:

it is possible to zstore a sequence of CCI Control Commands on disc

under a procedure name. When it is degired to execute thiz command
sequence or part of it, the procedure is called from the input
stream and it is possible at that point to £ill in certazin para—
meters or indicate which commands are %o be executed and which ones

are to be gkipped in the catalogued procedure.

CONVENTIONS

Hexadecimal numbers are written preceded by a slash (/), except
when used in an operator control message. So:
LDKL A7,/44FE (instruction) but:

DM 44FE 4600 (operator command)

. e

Control commands and processor calls are given to the Control

Command Interpreter, which types out 5: on the typewriter.
Operator control messages are given to the monitor, which types

out M: on the typewriter after the INT button on the contrel panel
has been pressed.

Clusters are object code records, the format of which is described

e e .

in the System Software Manual.

& o hoed oo
i i ooe |\ e |
1 0 ool oL
: 3 oo | 25
4 | \oQ V'
& ool 1
I o BIo 12
P aii V5
3 & ioeo &b
9 o oo | 2 |
A W 1010 14
B {1 (g 23
C AL | fOQ 20
T:l i1 llﬂ'| '..'lgll
]
EfY iie 4
S [T)3
'3
!
= 1
-in': I =
H “L‘d
wo b
oo 156
100 S080

2 Memory Organization

The Memory Layout is as followe:

1; 0

— HARDWARE INMTERRUPT LOCATIONS T
/7C
TRAP LOCATION /TE
Qm—mm e e ———————— 0 /80
CVT ADDRESS /82
fBL
— SYSTEM TABLES
JDE
— .J"'
G STACK OVERFLOW AREA Tfmu
:_’: STACK T
5] MOMITOR J:

i

14
1
y
L PR

USER PROGRAM AREA

END OF
MEMORY

- Location /0 to /7C are hardware interrupt locations. They are
hard-wired to internal and external interrupt lines. Each loca-
tion contains the address of the interrupt routine required to
service the interrupt connected to that location. The interrupt

connected to location /0 has the highest priority (level 0).

Location /7E contains the address of the trapping routine which

handles simulation of certain instructions not included in the
hardware (e.g. double add, double subtract, multiply, diwvi-
de, multiple load, multiple store and double shift).

Location /B0 contains O.

Location /82 points to the Communication Vector Table. This is

a system table which containg information which may be of use to

the user program. This table has the following layout:

j E——

= CWTMES Mamoey sire i CRAGIne
CVTETR Walue ol system sack hage
CUTSEMA Address ol the first incaton follow ig Gser progaam
CVTBEA dideiresg o ipst Incabhion N Eser ared
CUTHRA Haqinming addriss ol user ared
CwTHEP Chimgalehas aodrass
GVTPLS Mumber ol clock pulies noone secong

175 pomplement valua)
d

RAESERVED

TR

Gy AT andross of Job Paramelar Table [(so0 Bins

? AESERVED

WORDS

e ——

CNTYAR Year

S TR konih » Date recorded o ASN

CyTRAY Dy |

CYTHOR Hoe
Timp recofded

|

CWTHMIN [ELTIEH (b

CWTREC Speond com@lamenl
pinpry wiglus

CHTEIT Filheng Gl a second

- The area occupied by the stack is defined at sysiem genera-
tion time. When an interrupt oceurs, P- register and PEW
are stored here by hardware and a number of registers by
goftware. The number of registers stored de-
pends on whether the interrupt routine gervicing the interrupt
runs in inhibit meode [anywhere from O to 15 registers] or in
enable mode or branches to the dispatcher (always 8 registers).
The A15 register zlways points to the next free location in the
stack (where all information is stored towards the lower memory
addresses). When A15 reaches the value /100 or becomes lower a

stack overflow interrupt iz given.

- The area after the monitor area is the user area.
In the user area, one program can be run at a time.
The area remaining after the program area is reserved
for dynamic memory allocation. From this area, blocks of
memory space can be requested by the system or by the user. For
this purpose the user must send a 'Get Buffer! monitor request.
When he does no longer need the buffer, he must send a 'Relezge

Buffer' request.

Interrupt System

Programs and routines under DOM

run on the basis of an

interrupt and priority system consisting of up to 64 levels.

These levels are subdivided as followsa:

0-47T:
48 =
49 1
55 1
61

62
63 &
Tevel

levels for interrupt
routines connected teo the
hardware interrupt lines
interruptable monitor
gervice routines

disc file management

operator routines
abort module

user program
idle task

hardware interrupt lewvele

—

g software priority levels

0 has the highest priority, 63 the lowest, so all hardware

interrupts always have priority over the software levels.

HARDWARE INTERRUPT LINES

The interrupt linee are connected tc memory leocation fﬂ to f?ﬂ.

These locations contain the addresses of the interrupt routines

which service the internal and external interrupts.

For the interrupts the user can define the pricrity levels

at system generation time.

The following priorities are recommended for the various

interrupt lines:

11

/0 ¢+ power failure - (interrupt location /00)
/1 + LiM/stack overflow - (interrupt location /02)
/2 :+ real time clock - (interrupt location /04)
/3 : not used etc.

/4

/5 : tape punch

runched tape reader

/6 : operator's typewriter
/T
/8 - /F: free
/10 X1215 disc
A1 dise

/12: dise

/13: magnetic tape

control panel

/14: cassette tape
/15: card reader
f’15: -

/17: 1line printer
/18 — /1F: free

Software Priority Levels

Only the uger program and some of the monitor modules operate on
software priority levels: 62, 49, 55, €1 and 63.
The user program is activated by the CCI command RUN.

Level 63 is reserved for the idle task, an instuction sequence to

uze up idle central procegsor time. See also Chapter 4: Programs.

12

The dispatecher is a monitor module (M:DISP) running on level 48,
which divides central processor time by starting programs
according to their priority.

The diepatcher can be entered only from an interrupt routine, i.e.
from a level below 48; such as the Ifﬁ interrupt and monitor
request handlers.

Svetem Interrupt Stack

When an interrupt occurs, certain information about the interrupt-
ed program or routine must be saved before the interrupt can be
serviced.

This is done in the system stack, the addreas of which is held

in register A15. The start address of this stack is defined at
system generation time and it is built in a downward direction in
memory, i.e. towards the lower addresses. The A15 register always
points to the first free location in the stack.

Upon interrupt, PSW and P-register are always saved in this stack
and also a number of registers:

- any number if the interrupt routine runs in inhibit mode and
takes care of restoring the registers itself;

- registers 41 to AB if the interrupt routine runs in enable mode
or ends with a branch to the dispatcher, because the dis-

patcher alwaye handlee the stack on thie basis:

f -=— contenis of A15

low address i 7

AT

AS
85

= sawved registers

LT of interrugpted
routing

AZ

A2

A1

PROGRAM STATUS WORD

. interruptad PEW
high address P-register (A0)

13

When the stack pointer (A15) reaches er becomes lower than the value

/100, the last location before the stack overflow area, an interrup% occurs,

The Program Status Word, stored in the stack upon interrupt,
containe the following information:

bits O to 5: priority level — This information can
6 and 7: condition register— be modified by the
8: Tun E93 fi_———_. USeT . A
9: interrupt enabled (852)»
10: ceontrel panel interrupt This information can
11: power failure be displayed, but not
12¢ real time elock modified by the user.
13: LEM/stack overflow

14: memory protect (+MMU farrPEﬁ?}—I
15: system/user mode (P856/7)

14

4 Programming

INTERRUPT ROUTINES

User interrupt routines must have been connected to one of the
interrupt locations in memory (locations /0 to /7CL That is, the
address of the interrupt routine must be placed in one of these
locations, which at the same time determines the pricrity level of
the interrupt routine. i.e. the interrupt routine whose address is
loaded in lecation /0 has the highest priority (0).

The interrupt routine address may be loaded into this loeation in
several ways. One of them is to link-edit and include the routine

with the rest of the system modules at system generation time.

When an interrupt occuras, the P-register and PSW of the inter-
rupted program are stored by hardware in the system stack pointed
to by the A15 register (see Ch.3) and the gyetem is put in inhibit
mode .

Then the interrupt routine receives control and from within the
routine the user may store any other registers by scftware, if he
wighes. The interrupt routine may now continue in inhibit mode, or
if the user decides that other interrupts muast be able to overrule
the current cne, he may set the system to enable mode by giving an
ENE instruction. (Note: If an INH instruction immediately follows
the ENE instruction, & dummy instruction must be inserted, because
external interruptes are scanned every itwo instructions. This dummy
instruction may, for example, be another ENE, so the correct
gequence becomes: EHB-EHB-IHH). This, however, entails a eubstantial
difference in the handling of the system stack. If the routine runs
in inhibit mode from beginning to end, any of the registers Al and
A14 can be usged, provided the user first takes care of storing old
contents in the 415 stack and regtoring them at the end of the

routine. This may, for example, be done ag followe:

15

STR Al,A15 (on P856/7 and when the simulation rou-

STR A2,415 tine for multiple load/store has been se-
STR 48,415 lected at sysgen for P852, the eequence is:
(MBR 8,415
coding #Odiég
MLE 8,A15
LDR AB,A15 RTN 415)

LDR AT,A15

IDR A1,A15

RETH A5
This is the case of an interrupt routine in inhibit mode with 2

normal return via the A15 stack. The RTN via A15 results in an auto-
matic enable.

However, if other interrupts are to be enabled during a routine or
the user makes an absolute branch from the interrupt routine %o the

dispatcher (ABL M:DISP; for dispatcher address: see CVT), he must
take care that before the ENB cr ABL instruction is given, the 415

because on this basiz the A15 stack is handled.

Conventions

- Interrupt routines must start by saving the old contents of the
regigters to be used in the routine.

- Before returning via A15, the o0ld register contents must be re-

stored.

If a branch is made to the dispatcher, the stack musi contain
P, PSW and register Al to AB, so any other registers used, must
have been restored before making the branch.

- In case of an interrupt routine for internal interrupts (LKM/
stack overflow, real time clock, power failure, control panel},
an RIT instruction must be given at the beginning of the routine,

to reset the interrupt. See Volume II.

SOFTWARE LEVEL FROGRAMS

User programs run on one level: software level 62.

16

Level 63%: Idle Tasgk

Level 63 ie reserved for the idle task, an instruction sequence

to use up idle CPU time. It is memory resident and consiste of 2

instructions:
RF *+2
REE #-7

17

SCHEDULED LABELS

The scheduled label is a feature which allows the user to do a

gsort of multi-tasking by attaching a routine to a monitor request.
Te this end, the user specifies the monitor request ag having the
two's complement of the DATA number indicating the monitor function
vhich is to be executed, followed hy the. label of the routine which

must be executed upon completion of the reguest. For example:

normal I/0 request: with gcheduled label:
LDE AY,CODE LDK A7,CODE
LDEL AS,ECBADR LDEL AS,ECEADR
L¥M LEM
DATA 1 DATA -1, SCDLAB

In this case, the routine SCDLAB is to obtain control on completion

of the I/0 monitor request specified. When a scheduled label is

attached to an I/0 request, one should not set the wait bit, so

that the program can continue concurrently with the Ifb operation
requested. When that operation is finished, control is passed to

the SCDLAB routine, and the P-register, PSW and registers A1 to Al4

are stored in the 16-word save area (SAVADR) in front of the user
program. (When entering a scheduled label routine, only the value of A8
(ECBADR) is significant.) When the routine is finished and exits, control is
returned to the monitor, which passes contrecl to a possible following
gcheduled label routine, or back 1o the main program by restoring the
regigters and PSW from the save arsa. Thisg can be illustrated as followoa

MAINPROG

LEM
DATA -1, SCOLAB

1/ taking place, whibs BAINPROG eantimbns

e O ready——————— = SCOLAB (P, PSW 4 Al 10414 - - Save Argal

I\" EXIT
\‘& l

\ Momitor o
/ K
b
)
\ .

Savn Aren
[rastare reqalang]

Mecl achrduled laoel. i1 any

18

Any number of scheduled labels may be given in a program. However,

it is possible that one scheduled label is blocking exeeution of

another one because it is active, i.e. using central processor

time. In such cases the address(es) of the gqueued scheduled label
routines are temporarily stored in a table (FILLAB). The maximum

number of scheduled label addresses which may be stored in this

table at any one time iz the number defined at sysgen. This is the only
regtriction. Queued scheduled labels are treated on a first-in-first-

out basis.
Hote:

Although it is possible to give a Wait monitor request within a
scheduled label routine, this is not normally recommended, for it

blocks the wheole program.

Example:
This example illustrates how scheduled labels are gueuned in the

FILLAB table, when their execution is blocked in case of an I/0
operation en & glow device.

In a program there are three monitor reguests for output: onto
tape punch, typewriter and line printer. To each of these requests
a scheduled label is attached. Bach of these scheduled labels re-
guesta output on the typewriter. In such a case, it will be
evident that the line printer output will be finished first and
thus that the scheduled label attached to that regquest will re-
ceive control first. Now, when the other two output operationes in
the main program are finished, the scheduled labels attached to
them will be queued in FILLAB, for they are also reguesting oui-
put on the typewriter which is still busy with the last scheduled
label. When that one is finished control is passed on the last one
entered in the FILLAB table.

Note, that in this case the third scheduled label is the first to
receive control, because the I/0 to which it was attached was for

line printer and terminated before the other two.

19

BLFI
BLF2
BUF3
BUF4
BUF5
BLF6
DCBI
DCp2
DCBa
B4
DCBS
DCRG

START

SLABI

SLABR2

SLAB3

IDENT SLAR

DATA 1234567890

SPECIFYING THE CHARACTERS TO BE

DATA "ABCDEFGHLI® QUTPUT

DATA '2ZYXWYUTSRQ'
DATA "IAZBICADSE

DATA "BUFS
DATA 'BUF&'

DATA 5.BUFL50.00
DATA 5.BUF240,0.0.0
DATA 3BUF3.50,00
DATA 2.BUF4,12.0.00
DATA 5 BUF5.6.0,0,0
DATA 5.BUF6.6.0.00

LKD A™6
LDKL AR DCREI
LEM

DATA -1,5LABI
LDK AT6
LDKL ABDCBY
LEM

DATA -1,5LAB2
LK ATH
LDKL ARDCRH4
LEM

DATA -1.5LARI
LEM

DATA 3

LDK A%6
LKL A8.DCB2
LEM

DATA I

LKM

DATA 3

LDK A7.6
LKL A8DCRS
LEM

DATA I

LEM

DATA 3

LDK AT5
LKL AR DCEA
LEM

DATA

LEKM

DATA 3

ENIY START

DECLARING THE EVENT CONTROL
BLOCKS FOR THE QUTPUT OPERATIONS,
515 THE FILE CODE FOR TYPEWRITER,

3 FOR PUNCH, 2 LINE PRINTER.

MAIN PROGRAM STARTS AND REQUESTS
STANDARD OUTPUT OF BUFI ON THE
TYPEWRITER. SCHEDULED LABEL SLABI
ATTACHED THIS REQUEST,

MAIN PROGRAM REQUESTS STANDARD
QUTPUT QF BUF3 ON THE TAPE PUNCH.
SCHEDULED LABEL SLAB2 ATTACHED
TO THIS REQUEST.

MAIN PROGRAM REQUESTS STANDARD
OUTPUT OF BUF4 ON THE LINE PRINTER,
SCHEDULED LABEL SLAB3 ATTACHED

TO THIS REQUEST.
MAIN PROGRAM EXIT

SLABI REQUESTS STANDARD OUTPUT
OF BUF2 ON THE TYPEWRITER

AND EXITS
SLABI REQUESTS STANDARD OUTPUT
OF BUFS ON THE TYPEWRITER

AND EXITS
SLABI REQUESTS STANDARD OUTPUT
OF BUFs ON THE TYFEWRITER

AND EXITS

20

PROGHAM SEGMENTS AND OVERLAY STRUCTURE

If a program becomesg very large, it may be poseible to divide it
inte segmente and execute it in an overlay structure. Bach sez-
ment, in such a case, must be considered as a self-contained
program. These segments are treated as programs: they are given
names and they are catalogued with KPF (Keep File) commands,
under the same user identification. The usger mugt first decide
on the overlay structure in which he will have his programns ex-
ecuted. To this end he sets up a so-called 'tree! of the seg-
ments which form his program. This must be done in such a way
that those segments which are related teo each other, through ref-
erencee, form a path i.e. a sequence of contigucus segments
which can be in memory at the same time and start with the first
segment (root). This is shown in the example below:

-|-HDDT

SEGT 5EGA

‘ SEGR | SEG3 ' SEG1 | SEG]

In this 1llustration we can discern the following paths:

ROOT - SEG1 - SEG2
ROOT - SEG1 - SEG3
ROOT - SEG4 - SEG1

ROOT - SEG4 - BEG3

These segments have been previously catalogued under the names
SEG1, SEGZ2, SEG3 and SEG4A and they are declared as follows:

SEG S5EG1,5EG2,S5EG3,5EGY

RUN ROOT

The first control command defineg thesge programs ag segments of
an overlay structure and the second command starts the execution
of the program RO0T, which is the first zegment of the overlay
structure. ROOT takes care of loading SEG1 or SEG4, which, in
turn, lead the other zegments.

21

The design of such an overlay structure depends on several factors:
the available memory space, the frequency of use of each segment,
the relations between the different segments. The root segment is
the program that gets control at the start of execution. It con-
tains those program parts which have to be in memory throughout
program execution. When a reference ig made to a place in another
segment, that segment must first be loaded. If another path is re-
guired by the root, it overlays the previously loaded segments or
part of them.

The same zegment may be implemented in different paths in a tree,
if it is required by other segments in that path, as shown in the
illustration above. Any overlay structure can thus be used, since
the user himself is responsible for calling the loader and trans-

Ferring control to other segments.

The memory area required for the overlay depends on the length of
the longest path in a tree. If, in the illustration above, the
path ROOT-3EG1-8EG3 iz the longest, then at least the area required
for those segmentas is necessary.

At link-edit time, if a map listing was requested (M parameter in
the LKE control command), this map will contain the heading

L= X¥XX, indicating the program length. If the user wants

to use Get and Helease Buffer requests, he must reserve an a
area, in the roct, egual to the comhined Lengths of all the
segments in the longest path of his overlay structure. This

also goes for the blank common. Buffers will be allocated

after the last word loaded into memory when the root is

started through a RUN command.

When a segment is loaded, it is always loaded at its loading add-
ress + 8, because the Linkage Editor generates four words pre=-
ceding it and fille them with:

- Start address

= Number of gectores in the program

- Length of the program (in characters)

22

- Beginning address of the symbol table (for the debugging pack-
age).

This enables the calling program to branch indirectly to the add-
ress of the called program.

Below, an example is given of how a reference is made from one

segment to another:

ROOT
LIK AT,n Load segment number n
LDEL AB,LDAD Load address
LEM Monitor request to load segment n
DATA 9
ADE A7,0 Test if reguest accepted:
R¥(4) ERROR Ho: branch to error routine
CPI A14,B+4i,A8 Yes: Call entry point number i in
gegment n
SECGMENT N

1st data word DATA Entry point O
DATA Entry point 1
DATA Entry point 2

Entry point i EQU S

RTN A14 return to calling program via
regigter Al4

CATALOGUED PROCEDURES

4 catalogued procedure is a sequence of CCI control commands
stored on disc under a procedure name. These commands are executed
when the procedure is called from the input siream. It is poseible
to use or not use certain parameters of the commands in the pro-
cedure.

Catalogued procedures are kept in a special file named M:PROC,
with file type UF. For each <userid> , one M:PROC file can bte
uged. The M:PROC file may contain several procedures, each of
which must begin with the procedure name (the first character

of which must be §) and be terminated with an END command:

23

$PROCA

<commands of procedure 12

END

$FROCZ

<commands of procedure 22

END

:EQF

As shown, the last procedure in the M:FROC file muet be followed
by an :EOF.

The first line of a procedure is the name used to identify the
procedure call. The end of the procedure is indicated by the END
command, so input commands will be read from the normal input
stream.

Bach user can update his M:PROC file without any difficulty.
Adding new procedures ie alsc done by updating the M:PROC file.

A czll for a catalogued procedure is made by specifying the pro-
cedure name in the input command stream on the device with file
code /EG. The Control Command Interpreter (CCI) first checks if

it is the name of a standard CCI control command. If it is net, it
assigns file code /DO to the file M:PROC of the current <hserid”
and starts locking for the name used to call the procedure. If it
is found, the catalogued procedure is called. If it is not found,
the CCT will assign file code /D0 to the system M:PROC file and
look for the procedure name there. Having found the procedure, the
CCI will create a disc file with code /EE containing all the com-
mands to be executed for the procedurs.

Parameter Use

The use of parameters is allowed in the procedure body, but not in
the first line (procedure name) nor in the END record. Comments
are not allowed in these lines esither.

In the catalogued procedure body, the parameter may appear in the
first field (command name field) or in the second field (parameter
field) of a line. The following forms of parameter specification
are allowed:

24

- @ { param)

where {param? is s character string of up to 4 characters,

identifying the parameter name. If this name is not specified

after the name of the procedure called at execution time, no

parazmeter will be used.

For example, if procedure $PR1 is catalogued as:

$PRT

RDS

FRT /S @QNLST

LKE

RUN

END

and is called as: §FH1

it will cause compilation as: FRT /S

but if ealled as: $FR1 NLST=NL

compilation will be done as: FRT /S,NL
- @ {param} = default value

where the default value will be taken if the parameter is not

gpecified.

= (@ {param}) =

where the whole line of the procedure will be ignored if the

parameter is not specified.

A procedure $PRE is defined asz:
$PRZ2
@CM1=
LED @FPNAM=
@ CM2=FRT /S
INC @ MOD=
LEE
RUIY
END

If this procedure is called as:

the following commands will be executed:

25

$PR2 CM1=RDS

KD

FRT /S

LEE

RUN
If it is called as: $PR2 CM1=RDS, CM2=ASM
the procedure will be executed as:

RD3

ASM /8

LKE

RUN
If it is called as: §PR2 PHAM<PRGRAM,MOP=MATN
The procedure will be executed as:

LED PRGRM

FRT /S

INC MATK

LEE

RUN

= all the parameters in the procedure call are keyword parameters,
geparated by commas.

- in the procedure body, parameters may be separated by spaces or
commas: spaces are used to separate the command field from the
parameter field; between parameters, only commas are allowed.

- in P3E and MES commands used in a catalogued procedure, no
blanks are allowed within the message.

= Input commande for processors, e.g. LED are not allowed within
a catalogued procedure but must be done on another file (e.g. /ED}.

- when, from within a catalogued procedure, ancther catelogued pro-
cedure is called, no return is made to the first (calling) pro-
cedure.

If the second (called) procedure is not found, an immediate re-
turn is made to the first procedure.

- the user can not use a catalogued procedure to open a new session,
for the commands JOB and BYE implicitly cause the END of the

procedure.
- the S5CR command may not be used inside a catalogued

procedure, except as SCR /S or SCR /0.

26

Error Messages:

ERROR IN PROCEDURE DEFINITION

ERROR IN PROCEDURE GENERATION (procedure is not correct)
PROCEDURE NOT CATALOGUED (procedure unknown in M:PROC file)
M:PROC NOT CATALOGUED

I/0 ERROR

JOE PARAMETER TAELE

The Job Parameter Table congigts of a 5-word communication area,

followed by a certain number of words used by the system. The

layout ie ag followe:

JPTTA
JPTTRZ
JRTTRI
JPTTP4
JPTTPS
JFTTPE
JPTTPT
JPTTR3
JPTCAL
IPTCAZ
IPTCAZ
JPTEAS
JPTCAS
JPTOSKH

JRTOIA

PAOGAAN

— STAART _

TIME The dilference balwizen Lhe
T firat and the second value

givas tho time elapaad babwaan
}A ihe siarl of the program and

— PRAGGRAM I]
eamme— EXIT) |

TIME |

m|ul s foefos = fs1]

userdiaa hile coda

s diractory addnesy

JPTCA1 to JPTCAS are used by the eystem processore as follows and
refer to the CCI commands ASM, LKE, FOR, FRT and their options:

Assembler:

Linkage Editor:

M =0, if NL is present in the control command
M=1, if NL is not present in the control
commznd

The other bits are not meaningful.

M =1, if the parameter M is present in the
command

M =0, if the parameter M is not present in
the command,U and S are set as follows:

27

5 =0
0 and S

if U ie present in the command, U = 1 and B

if W is present in the command, U

if 5§ is present in the command, U

]
Q

if neither U nor § is present, U =8 = 1

IE = 1, if the parameter DE is present in the
command

IS5 = 1, if the parameter IS is present in the
command

BT = 1, if a start address has been specified
in the command

JPTCAZ containg the binary wvalue of the common
digplacement.

If there is no common, this word is reset to
ZeTo.

JPTCAS to JPTCAS containe the entry point name
of the start addresge, if it has been sgpecified.
If the name congiste of fewer than 6 characters,
it ie filled up with blanks and left justified.

FORTRAN M =1, if HL is not present in the control .
Compilers: command
M =0, if WL is present in the command
R =1, if the parameter R is present in the
command
R = 0, if the parameter R is not present in the
command
The other bits are not used.

287

5 Disc Organization

To understand this chapter it is necegsary to define some concepts
first.
The disc organizgation is based on sectors, which are gectione of a

track with a length of 205 words, of which 200 are usahle.

On the basis of this sector concept, the following definitions
mugt be kept in mind.
= Digc Sector thsical Address EDSPE}:
the physical address of a sector om the disc, i.e. the address
of a sector in & consecutive arrangement.

- Disc Bector logical Address SDSLA]:

the address of a gector on the disc as calculated by interlac-

ing, which is ordering the sectors in such a way as to make
acceas as efficient as possible (zee below).

- File Sector Address EFEA}:

the address of a sector Ingide a logical file as managed by Disc

v e e o i e o o e B

File Management (DFM).

Ingide a file, the sector numbering starts at the third sector:

l_; rl'isem[red sector

|
GRANTE sector (see below)
sector O, This ig a FPile Sectoxr Address.

EECTORE

The basic unit in the organization of sll types of disc used iz a
gsector. All accesg operations take place at sector level, The
gectors are numbered feor O te n, consecutively. They can be acc-
essed directly from any program through the IfD driver. A sector
has the following format:

23

IDENTIFIER 1 WORD

L] -
W

The identifier is written in the first word of every sector by the
DISC PREMARE program. For moving head discs it contains the number
of the cylinder in which this sector is located. PFor fixed head
discs its wvalue is not significant. The sector identifier is used
by the system to check if a szeek cperation haeg been szucceesful or
not. The first word is set by the driver when a sector is written
onto the disc. This word must not be modified during the I/0
tranefer, or a 'seek error'! status may be returned later, when the
game sector or another one in the same cylinder is accessed.
Although physically the sectors on a disc are numbered consecutive=
ly (Disc Sector Physical Addresses), for logical handling they are
numbered in a different manner {(disc sector logical addresses).
This is done to give a requesting program encugh time to process
the current sector before regquesting the next ome in a segquential
PTrocess.

For these logical sector addreeses the sectors are interlaced, on

a factor -3 basis for discs with 8 or 16 sectors per track.

5 o diec sector
"

physical address

15
dise sector
.11 1 ==
z logical addiress

16 gectors

30

The digc pectors are always, except in one case, handled accerding

to their logical addresgses, e.g. all Data Management operations

take place on this basis and when a disc dump is made, the sectors

are dumped in their logical order. Only with disc error messages is

the sector address indicated the physical address.

FILES

We have seen that the term file szector address takes into account

that the first two zectors of 2 file are reserved: cne for file

header and one for a table called GRANTB, so that sector address-

ing starts with the third sector, which gets file sector addreas 0.
Space allocation on the disc for a file is done on the basgis of
granules, where each granule is an area of B consecutive disc
sector logical addresses, i.e. B logically consecutive sectors. 4

file is always stored on an integer number of granules, so one

granule cannot be shared by two or more files. The system allocates
as many granules as necesgsgary to a file which is being written.
These granules are chained and attached to the file code agsigned
to that file.

The addresses of the granules alleocated to a2 file are kept in the
table GRANTE In the gecond sector of the first granule of that

The sector GRANTB is initialized when a file code is
assighed.
GRANTE is filled with the addresses of the allocated

granules, any remaining worde being set to zero.

For sequential accesas, when an attempt is made to write onto a
granule which has not yet been allocated, a new one is allocated

and GRANTB is updated. The system manages a table called BITAB
which contains one bit for each granule on the disc. This table is

copied into memory when a disc pack is leoaded and updated in core
and written back onto disc when a Keep File command is given. A

bit is set to 1 when the corresponding granule has been allocated
and it ig O when the granule iz still free. Allocation takes place
via this table, after which the granule address is stored in GHANTB.

31

¥ 1"4.-{ _ i y g
.--'| + A | _.-,_:":.:"I" _‘_{ {'_.L'J"J.- | s |_.-|..|,_._| | ‘LF'I:{—'{'LI._,-;J :
F-\]' /3 N?bi{r‘ ,, % Qoox € = ok wevel? b

L1
GRANTE 0 IDEMTIFIER
2 LENGTH

4 ADDRESS OF GRAMULE o OF THE FILE

B ADDAESS OF GRAMULE 1 OF THE FILE

In this table, location 2 (i+2) is the address of the ith granule.
If the granule has not yet been allocated, the location contains
the value zearo.

The granule address is a binary value from O fo n, representing
the relative sector address, from the beginning of the disc, of
the first sector of the granule. GRANTB is 200 worde long, so the
file length is limited to 320k words (200x8 sectors).

Note: Random access files of more than 200 granules are

possible, but when such a file is deleted under DOM, only

the first 200 granules are deleted.

Finally, & file iz organized as follows:

Hiler

R R -
franle granube franuie
A = — ——,
Baeaiors
|;\ - roserend Cfile header)
L abipcabon laksle lar s il {GRﬂHTBJ
Thisimphies thatwhena fieos accessed n random mode. recorod numboe
s |he third spoigrat the frstgranalo of the file

Inside the file, the useful area in a sector is 200 words (see

Record Format),

At the start of a session with the DOM, allocation begins from
the first granule available and new granulas; if any, are added
in ascending order (higher sector addresses}. No backward search
ig deone to take inte account any granules which may have been
deallocated again, e.g. after deleting a file. On the other hand,
a specific command provides the possibility to start allocation
at the first granule (SCR: Scratch control command). The alloca-

32

tion table BITAB stored on the disc iz updated only when a file

is made permanent (KPF control command) and when a file is deleted

(DEL control command).
Allocation is done for temporary files only when they are written.
So, a file which has been made permanent (KPF control command)

cannot be extended directly. Updating = sequential file is done
in the normal manner by copying it through the Update processor
(Line Editor). Updating a permanent file in random access can only
be done directly if no extra granule is required (see Data Manage-

ment) .

The firgt two granules on 2 dige are always reserved and used by
the system for catalogues and libraries.

33

ACCESS MODES

Files can be accessed in two ways: random and sequential, each

access mode requiring a different organization of the file.

RHandom

This type of organization has the following characteristics:

- records are of fixed length: one logical record=one physical
record=one disc sector. = 100 wovih woadl

- the records in the file may be organized in any manner. Access
takes place according to the file sector address, i.e. by the
relative position of the record in the file (not counting the
first two sectors, which are the file header and GRANTB). The
logical sequence of the records is not identical to the physical
seguence. Such & file is a keyed file, the relative number of

the record (sector) being the key.

- when a randem file is created under DOM, one granule is allocated

at a time, so extension of the file is possible as long as the
file has not been made permanent (KPF control command).

- records are accessed directly by szpecifying the file secter
address.

- records may be retrieved, updated and restored individually.

- random access files should be Assigned, Hept and Deleted

under DRTM, not under DOM. See Note on page 32.

Seguential

Thie type of crganization has the following characteristics:

- records may be of any length, up to 16k words. The sector
format of such records is described below.

- the only relation between the records in a sequential file is
their sequence. The records of such a file must be presented in

the order in which they must be written onto the disc, i.e. the

34

logical sequence of the records is identical to the physical
sequence.

- to retrieve a record, the whole file must be scanned up to the
degired reccrd.

- to update a record, the file must be processed as a whole.

Additional details on Access Mode are given in chapter 7, Data
Management.

Record Formats

The format of physieal record (sector) has already been described
(see SECTORS). This is the record format for random
files.

In sequential files a sector may contain & logical record or it

may be part of a logical record. Sectors have the following format

in these files:

Identilier 1 word
Status I] Longin 1 word
i} 2 7 15 I
Dt Area
200 words

3 reserved words

- atatus consistes of 3§ bits:
bit O0: if 1, this sector has been deleted
bit 1: if 1, an E0S (End-of-Segment) Tecord has been
written in this sector. This record is the
last one in the sector, for the first record
following an E0S always starts at a new
gector.
bit 2: if 1, EOF {End—nf—File} record hae been
written in this sector. An EQPF record requires
a full sector without any other records in it.
8¢ when an EQF is written for a file, first the
current sector buffer is written, if necessary,
and then an additional sector for the EOF
record.
- Length: specifies the length, in characters, of the used

area of this sector.

35

~ the data area contains dats written in either segquential
or random acecess mode.

= the last 3 words are not used.

The logiecal records in sequential access files are always compressed
and blocked by the system to save disc space (trailing blanks are
removed). The format of these logical records is as follows:

L L1 -

[L1]Lz| DATA BeE

L1 is the length of the record, inecluding the 2 worde 5 and D, but
excluding L1 and LZ2:

woroLr [v]s[F | RECORD LENGTH |

1: this record has been deleted from the file

1: this record ig an EQS record

[
1]

F = 1: thisg record is an EQPF record

L2 is the initial record length, in characters. This is the re-
quested length recorded in the ECB when the I/0 request for
writing thie record was made.

5 1is the file pector address within the file containing the
firgt word of the record.

I ig the displacement in characters in the sector 5, of the first
word belonging to the record.

Data is up to 1600 words long (ons granule), Ttrailing blanks

removed.

26

Epecial Hecords

There are some epecial records in sequential files, which have

the following format {cf. Record Format) {values in hexadecimal]:

:EO0S: 4004 = 0 = § = D
| B
L1
:EOF: 2004 = 0 = B = 4
— o
L1 D

Blank card: 0004 - 0050 - 8 = D
e
L1 L2 (hexadecimal 50=decimal B80=card length)

Note: Records on digc always consist of an even number of char-
acters. S0, whatever the value of L2 given by the user at
creation time, L1 always repreeents an even number of
characters, because when the requested length is an odd
value, a dummy character is added to the record. An EO0S is
always stored in one sector and must be the last record in
the sector.

An EOF ia always written in a separate sector.

31

FILE TYPES

Tnder the DOM, the fellowing four file types can be distinguished:

- Source file (5C)

Source files are sequential filesg input in source language oT
after an update of the socurce language. These files are used as

input to one of the language processore.
- Object Files (OB)

4n object file is a sequential file with one record per object
cluster. Bach object meodule is followed by an E0S record. A
new abject module starts at a new sector. The final object
module in an object file is followed by both an EQS and an EOF
record.

Ae an object module iz not a file, it need not necessarily be
stored on an integer number of granules. Therefore deletion of
an object medule need not reasult in deallocation of a granule.
However, in such cases a flag ie set in the =zecond word of
every sector of the deleted module (See Sector Format: Status).
When an object file is read sequentially, the Data Management
routines will automatically skip any deleted sectors.

- Load Piles (LM)

A load file is accessed in random mode. Bach full sector of
guch a file contains 188 code words and 12 control words for
relocation bite (see Linkage Editor).

The first four words of a lcad file combain the following
information:

gtart address of the leoad module

nunber of sectors in the load module

memery length reguired

- address of entry points table (for debugging functions).
- Undefined Files (UF)

[y p—— — s

This type comprises all other fileg, such as dataz filee.

38,

Load Meodule Size

All system or user programs must be kept on disc in the load for-
mat generated by the Linkage Editor or at system generation.

The number of granules required for keeping a program is
((s-1)/188+2)/8+1

8 being the program size in words. Thue, the fellowing table gives

the maximum program size for a number of granules:

Number of Granules Maximum Program Size (words)
1 1128
2 2632
3 4136
4 5640
5 7144
6 8648
T 10152
a8 11656
9 13160

10 14664
11 16168
12 17672

39

DI5C STRUCTURE

Catalogue and Library Structure

On a disc, the Catalogue containe one entry for each user identif-
ication declared on that disc. Each of these entries contains a
peinter to a library, cne for sach user in the Catalogue. Each

uger library congists of 2 directory and the files in the library.

Catalogus St

cture

The first granule on a disec containe a2 catalogue of the users of

thie disc. Ite layout is as follows:

- Sector 0: Volume label and disc allocation table (see Premark:
Appendix B).

- Sector 1: IPL (Initial Program Loader).

- Sectors 2 to 7: Catalogue.

SECTOR Q,
GRANULE 0 SECTOR IDENTIFIER = O

USED LENGTH = 400

LT =]

§ oy

VOLUME LABEL {WRITTEN BY PREMARK)

A

L

NUMBER OF CHARACTERS IN BITAR 84

BITAB (DISC ALLOCATION TABLE]

THE 16 BITS IN EACH WORD REPRESENT THE STATUS OF 1~
15 CONSECUTIVE GRANULES: B

0: ALLOCATED OR DEFECTIVE
g 1: FREE

THE LENGHT OF THIS TABLE DEPEMDS ON THE DISC TYPE

}

iR

SECTOR 1 SECTOR IDENTIFIER
USED LEMGTH, IN CHARACTERS

i

INITIAL PROGRAM LOADER (IPL), USED TO LOAD THE MONITOR-T—
WHICH IS STORED ON THE DISC, FROM THE THIRD GRAMULE
(SECTOR 18}

b

AQ

The Catalogue consists of entries occupying B words each; each
entry relates to a user who has been declared for this disc
(Declare User control command: DCU). An entry has the following
format:

USER IDENTIFICATION | RESERVED | POINTER | RESERVED

] 1 2 3 4 a 3 T

- words O to 3 containe the user identification, as declared in
the ICU command
- words 4 and 5 are not used

- words 6 contains a2 pointer to the user directory; it is the disc

sector address of the granule containing the user library dir-
ectory.

- word 7 ig reserved.

If the user identification is SYSTEM, the value of the pointer in
word 6 is 8, because the system directory always occupies the
gecond granule on the dise.

The Catalogue may contain up to 150 entries (6 sectors, 25 entries
each).

When an entry has been deleted, the first word is filled with
/0000.

The last entry in the catalogue is followed by a word containing
/FFFF.

41

GRAMULE 0,
SECTORS2TO 7 © SECTOR IDENTIFIER
cotploaue. 2 GHARACTER LENGTH OF USED AREA
4 c ; A
FIRST ENTAY T A
IN SECTOR 2
L o
10 a —
12
RESEAVED
18
it USER IDENTIFIER {UP TO EIGHT CHARAGTERS) .
BEGULAR ENTRY Tl
IN ANY SBECTOR
THESE ENTRIES ——
CREATED AND i I RESEAVED . =
USED UNDER s
DUM. ADDRESS OF FIRST SECTOR OF DIRECTORY
RESEAVED
=Lagt entry _L-
.,.-""
of directory
ig followed
by a2 werd = —
FFFF
~Deleted entry
= rezet 1st
word Lo zero
Format of user catalogue (sectors 2 to 7) -

Directory Structure

Each user is provided with hie own directory and library. The dir-
ectory occupies one granule and contains the names of and pointers
to the user's files. The granule containing the uger directory may
be leocated anywhere on the disec, except when the user is SYSTEM.
In this case it iz the szecond granule on the dise.

Each entry in a directory conaists of 8 words:

FILE MAME TYPE| RESERVED | PQINTER | RESEAVED

+] [2 3 4 5 6 7

A2

- words 0, 1 and 2 contain the file name

= word % contains the file type, which may be one of the following:

« for source files:
« for object files:

« for load files:

sC
0B

« Tor undefined fileg: UF

- word 6 is the file pointer; it contains the disc sector address

of the first granule of the file

- wordas 4, 5 and 7 are reserved.

GRAMULE 1,
SECTORS BTO 15
{USER FILE
DIRECTORY)

m = B O

1 I.l

Current enfry”

File 1ype =
UF: User data File
LM: Load Madule
5C: Source
OB: Object

= Last eniry is
followed by
FFFF
- A deleted entry
5 resel 1o
zero (18t word only)

|

SECTOR INDEMTIFIER

CHARACTER LENGTH OF USED AREA

USER IDENTIFIER

{including first

2 two words)

b 1at entry of
aector &

FILE NAME (6 CHARACTERS)

FILE TYPE

RESERVED

ADDRESS OF 15T SECTOR OF THE FILE

RESERVED

Format of Directory

A user directory may contain up to 200 entries (8 sectors of 25

entries each).

Each entry points to a granule table (GRANTE), containing the

succeseive addresses of the granules allecated to the file re-

presented by the entry in the directory. GRANTE may contain up
to 200 granule addresses.

43

When an entry has been deleted, the first word is filled with
the wvalue /0000.
The last entry in a directory is followed by 2 word containing
the value /FFFF.

The granule for the user directory is allocated at the time when
a new user is declared to the system (DCU command) and entered

in the Catalogue.

EBslow a drawing is shown of the DOM library etructure.

SRC10f Catalegua
e,

Grafalg 1

‘ T eniries of 8 words aach

System Library Diractory

Giranle 2

\\ N .;'_.-,mq”m;'J

Systern Softeara Components

Library Deractory of Lser &

Grinuke X

\\ M Granules”|

Files gl Llser &

Library Dirgetory of Lisar B

Y

Granuley

¥

\\ M Granules™}

Files al User B
“) Thirse granules are mof necessarily adjacent.

Example of the Structure of Catalogues and Librancs

44

DOM System Disc Structure

The System Disc contains all the system software, i.e. the monitor,
the system processors and the system object library. These software
components are on the disc in the same manner as the files of the
different users are, i.e. in a user library coupled to a user
identification . and a directory. For the system software the user
identification SYSTEM is used. It is5 necessary that the first file
in the library cof the 'user' 3YSTEM is the monitor and that all

the granules it occupies are adjacent. The format of the monitor

is the same as that of load modules and it may be catalogued under

name and type.

The other SYSTEM sofiware components must be present in the directory

of this first user identified by SY¥STEM, but the granules they
occupy need not necessarily be adjacent. Thus the first granules of
the System Disc are occupled as follows:
Granule 0: Sector O: Volume Label
Sector 1:; IPL=Initial Program Loader
sectors 2 fto Ti: Volume Catalogue
Granule 1: Directory of the first user, i.e. SYSTEM
Granules 2 to n consecutively contain the Monitor.
The other software componenis use granules randomly.
Any granules remaining on the System Disc can be ussd by sther ugers

for their files.

45

6 Input/Output

411 1/0 operations are initiated by an I/0 monitor request. At
ayetem generation time, the necessary tables for fulfilling this
request must have been filled and the necessary modules loaded.
When the request is given, with an LEM instruction, register AY
must have been loaded with parameters about the particular type
of I/0 function, while register A8 must contain the address of an
Event Control Block which holde the necessary information about
the data to be transferred.

There are several types of I/0 request (as specified in A7)

- Random I/0 requests: for random access I/0 operations on disc
devices.

- Basic I/0 requests: for these requests the monitor will not do
any character checking or data conversion, so they are used in
case of binary I/0. The monitor handles only the control com-
mand initialization and signals the end of the 1/0 operation.

- Standard ASCII I/0 requests: these requests provide more
monitor facilities, such as error control characters, data con-
version from external code to internal ASCII code and wvice
versa, character checking for end of data. Characters are stored

8 by & bits, twe to & word.

Moreover, & number of control functions can be performed through
a monitor request, such az writing BEOS or EOF records, skipping

forward or backwards, rewinding, etc.

In the Event Control Block (ECB), pointed to by register A8, the
user specifies the file code (see below) of the device or file
concerned with the I/0 operation, and additional parameters such
as buffer address and buffer length. At the end of the I/0 op-
eration, the monitor places information about the result of the

I/0 operation in this ECB, so that it may be verified by the user
Program.

47

For non-disc devices, IfD operations are done at record level, by
1/0 drivers running at level 48. No blocking- deblocking is per-
formed. For disc devices, the user can use an I/0 driver or he

pan access the disc through the Data Management package. If he uses
the driver, he must aspecify an absolute sector address for the /0
operation. With Data Management, he epecifies the relative sector
addrese for direct accessz and Data Management will find the

correct sector, Moreover, Data Management automatically

provides additional functions, such as blocking-deblocking.

In a. following chapter detailed information will be given about

the Ifﬂ monitor requests.

DOM LOGICAL FILES AND UNITS

To facilitate use of the system, the control command language allows
for implicit addressing of some system logical units and for calling

gome gystem temporary files by & predefined name.

Temporary Source File: /S

At creation time, a gource file is always temporary. The monitor
allocates the neceseary granules to this file on the disc which
containa the library of the current usger.

4 source file is sequential.

The disc temporary source file /S can receive a file read from the
gource input unit or a file which is the result of an updating pro-
cegs done for a library source file. The /S file may then be ugsed
gs Input to one of the language processors.

Tt is posesible to have this file listed, printed or punched (LST,
PRT and PCH control commands) or the file may be made permanent by

keeping it in a library (KPF control cﬂmmand} for later use.

Temporary Object File: fD

An object file, i.e. an output file of one of the language pro-
cessors 18 always temporary at creation time. Disc space is alloc-

ated to it when it is being produced, in the same way as for tem-

46

porary source files, i.e. by the monitor. The temporary object
file /0 receives the object modules read from the object input
unit, or object medules preduced by one of the language pro-
cegsors or selected from the object files of user libraries.

The /0 file is sequential.

The /0 temporary object file is used as the main input file for
the Linkage Bditor.

By means of the econtrol command POB it is peossible to have this
file punched on tape and by means of the contrel command KFF all
or part of its object modules may be placed in a library.

Temgararz Load File: ﬁL

The output of a link-edit operation is the temporary load file fL.

This file iz rendom file. Disc space is allocated fto it by the

monitor as for the other temporary files. This file may be execut-

ed by means of the control command RUN or it may be sfored in a

library (KPF control command). It is also possible to have the fL

file punched out (PLD command}, but enly for LEM ocutput, net for OLE
putput. In this case the format iz converted to standard cbject cluster
format. Such a module cannot be directly intreoduced from the object
input unit to the fL file. It first has to be put on the

/0 file and be link-edited.

source Input Unit

A8 defined at eystem generation time, the source input unit may be:

card reader

punched tape reader

]

ASR punched tape reader

capgette tape unit

- magnetic tape unit.or disc, i.e. any input device.

By means of a specific control command (RDS) source programs can be
read from this unit and be copied onto disc as a temporary file
ready for assembly or compilation, or they may be copied into a
library and made permanent (RDS, followed by KPF control command).
There is no reegtriction in addressing the unit from the user pro-

gram.

49

Obhject Input Unit

This unit is alsc defined at system generation time, and may be

one of the following:

= disec
- punched tape reader

- ABR punched tape reader

cagsette tape unit

magnetic tape unit.

Ey means of the command REDO, an object module file on punched
tape can be read from this unit, to be copied onte disc as a
temporary file ready to be link-edited or it may be copied into
a library and made permanent for later use (RDO, followed by KFPF
control command).

Because no object code is punched on cards, this unit may not be

a card reader.

Command Tnput Unit

Thig is the unit on which the control commands are entered. As
defined at system generation time it normally is the operator's
typewriter , but it may be any input device.

Print Tnit

If a line printer is included in the configuration, this may be
defined as the print unit at system generation time, otherwise

it will be the print equipment of the operator's typewriter.

Punch Unit

One of the following two may be defined as the puneh unit at

syetem generation time:

- tape punch

- ASH tape punch

- casgette tape unit
= magnetic tape unit

- diec, i.e. any output device.

50

Hote:
During & session, new assignments may be defined for different
unite, but when a system is loaded the assignments are the cones

defined at system generation time.

FILE CODES

The fellowing file codes are standard assignments for the logical
filee and unite grecified, as incorporated in the Disc Operatine
Monitor.

Depending on the configuration, different logical units may have

the pame physical assignment:

071: uger typewriter (answers from CCI S:); used by user
program)

021 print unit

-55: punch unit (output)

04=09 1 reserved for peripheral devices

Do: catalogued procedure input

D4 : /S file or library source file (Line Editor output)

D5: /0 file (4SM output, LEE input)

D6 : /L file (LEKE output)

D7: system object file (library)

DA user object file {library)

D% and D9 to IF are reserved for system use.

EO: control command input

5i: source input

EZ: object input

EE: catalogued procedure ocutput

EF: system operator's typewriter (system output in response

to INT button: M:)
FQO to T are logical addresses of disc units. These are reserved

for system use, and are not to be used by the user.

51

The file codes 01,02,03,E0,E1,E2 and EF can be used without
having been assigned in a previous ASG conirel command.

The file codes 04 to CF can be used by the user to address his
own files and any additional peripheral devices in his configur-
ation, but only after he has assigned thesge file codes through
ASG commands, or, for 04 te 09, at SYSGEN time.

File codes OA to DF are scratched when an SCR or BYE command (see

chapter 9) is given.

ACCESS MODES

Twe access modes are allowed for dise files: random and segquen=-
tial.

~ Random access is possible only for fixed length records of 200

words (one sector).

A record is accessed by means of the record number (file sector address).
- Bequential access is pogaible for records of wvariable length of

up to 3200 characters (1600 words = 8 sectors = 1 granule).

The interface for sequentizl access in read or write mode is the

same as for punched tape, cassette tape or magnetic tape, the

blocking-deblocking function and blocking buffer allocation be-

ing handled by the system.

A file written in sequential mode can be accessed in random mode.

For further details asee Data Management in Chapter 7.

7 Data Management

Data Management coneists of a set of routines to help the user
transfer his records between the memory and the peripheral devices,
to help him create files of a particular type and retrieve records
from these files. The routines are selected and included in the
monitor at system generation time.

Data Management is memory resident and runs at level 49. This
implies, that a request coming from a program at level 49 can be
processed only when this program, or any others connected to level
A9, have given a Wait monitor request.

411 operations on the peripheral devices take place through file
codes, so the user need not know the type and physical address of
each device. The system will find this out by translating these
file codes with the aid of monitor ftables.

There are two types of Data Management, i.e. twe ways of writing

or reading fileg:

Seguential Aeecegs Method and Direct Acceags Method.

The user creates a file by asgsigning a file code to a Lemporary

disc file {ASG control command} and writing onto it by running a

DrOZram.
Inder the Disc Operating Monitor, if the user wants to make the

file permanent for later use, he must do so by specifying a KFF
(Keep File) control command at the exit of the program, otherwise
thig file will be scratched at the end of the session or when a
goratch command is used. The file is then catalogued and may be
consulted any time, after a file code has Deen assigned to it.
Once the file has been made permanent, however, the number of
gectors it occupies cannot be changed, because granule allocation
ig done only when the temporary file ig created.

A1l Data Management operations, i.e. reading and writing a record,
writing EQOS or EOF, etc., are done by I/0 monitor requests in the
program for each record, in which the user can specify the access
method and the datz menagement function. It is not necessary to
call special routines. The mode of access is determined by the

firat request for a whole run.

53

At system generation time the user has to define the number of
buffers and their lengths for use by the Data Management package.
In general 2, or at most 3, buffers of one sector length will
suffice. These will then be included in the aystem to be allocated

automatically.

The first sector on each disc contains a disc allocation ftable
(BITAB) in which the status of each granule, free or allocated, is
recorded, See page 31

The eecond gector of each file containg a granule table (GRANTE)
with the addresses of all the granules of this file. See page 31
Four types of file exist:

- source (SC): only sequential access possible

- object (OB): sequential and direct accese possible

- load module (LM): only direct access possible

- undefined (UF): sequential and direct access possible.

. 54

SEQUENTIAL ACCESS METHOD

A file is sequential when the only relation between the different
records ig their sequence. When such a2 file is created, the records
must be presented in the same order in which they must be written
onto the disc. To access the file, it must be scanned sequentially
until the desired record iz found.

The logical seguence in a sequential file is identical to the

phyeical sequence of the records in the file.

Recard Structure

User records may contain up to 3200 characters. This implies that
a record may be part of a sector or that it may occupy a2 number of
sectors. When these records are written onte disc they are first

blacked into a buffer.

Logical Hecord Format

In order to =save disc space, the aystem compresses and blocks the
logical records used in sequential access; trailing blanka are re-

moved. The format of a record is as feollows then:

o
L]

LL2 Danta

L1

where:

L1 ie the record length, including the words 5 and D, but not
ineluding L1 and L2:

VIS|F Recard Langth
Bit O 1 2 3 i5
= not used
8 = 1, if the current record is a segment mark (E0S)

= 1, if the current record is a file mark (EOF)

L2 = the initial record length in characters, as specified in the
user's ECE (word 2) in Write mode
§ = file gsector address of the firat word of the record.

= the displacement in sector 8 of the first word belonging to

the record (number of characters).

20

Sector Format

s e s

The format of a sector is as follows:

T

o] L Dama Fhel-sz-niglj
word 0 1 202 203 204
where:

ID is the cylinder identification: a number from O to 202, used
to check seek operations on moving head discs.
1 is the length of area used for data in the sector (0 to 400

characters)

S| F L

bt 0 1 2 3 15
where:

I =1, if the sector has been deleted from the file.
1, if the current sector contains a segment mark (E08).

m
L]

1, if the current sector containes a file mark {EGF).

§Eecial records

Some special records have the following format (compare with =

Logical Record Format):

tBOS; 4004 = 0 = 8 = D
\.ﬂ’—-‘
L1
:BOF: 2004 = 0 =5 -
<y :
L1 D
: Blank card: 0004 - 0050 - 8 - D
Tt Namsmy—t
L1 L2 (hexadecimal 50 = decimal 80 = card
length).

HNote:

Hecords on disc always consist of an even number of characters.
80, whatever the value of L2 given by the user at creation time,
L1 always represents an even number of characters, because when
the requested length is an odd value, a dummy character is added

to the record.

56

An EOS ig alwaye stored in one sector and must be the last record

in the gsector.

An EOF ig always written in a separate sector.

File Creation and Processing

A gequential dige file is created by the program delivering the
logical records with the zid of the Data Management Package. Each
record is written by an Ifﬁ request up to 'Write EOF'. When this
request is encountered the contents of the lazt blocking buffer
are output to the diec and an EQF record is written in the next
sector.

When a request is given to write an EDS, the current sector is
terminated with an E0OS record and the following record will be
written at the beginning of the next sector. Before creating a
geguential file the ueer must asgesign a file code to a temporary
disgse file. If the user wants to have the file catalogued, he must
give a KFF control command before closing the session. Before
reading such a catalogued file or writing onto it, an assign

command has to be given for it.

Updating

If & user wants to update a seguential file he must first read it,
then update it and finally write the updated file on another
temporary diec file. Such an updated file can be made permanent
in the same way as the original file and under the same name, by
meang of the EPF contrel command. If the
uger gives a new name to the updated file, the original file i=s
not degtroyed, which enables him to have several versions of one

program belonging to the same Library.

Read a HRecord

To get a logical record from an input sequential disc file, the
user may give a Read monitor request (LEM 1), as for any other
device. The system automatically provides the disc buffer, fills

it, deblocks the records and recovers any errors. Only the sign-

57

ificant part of the record will be etored in the record area spec=
ified by the user in his ECEB, i.e. control worde will be removed
by the szystem.

When an EOS or EOF mark is encountered, this is indicated to the
user in the Status word of the ECB (word 4). An attempt to read
records beyond an EOF merk will cause an EOF status to be returned

to the user.

Write 2 Hecord

To put a record on an output file may be done by means of a Write
monitor regquest (LKM 1), as for any other device. When the record
ig moved to the disc buffer it will be formatted with control
worde, as it consiete only of data worde in the ueer area. The
gystem will aleo take care of buffer allocation, Tecord blocking
and error recovery. For temporary sequential files, records can
be written onto a file until the maximum number of granules has
been allocated (200). After this, an 'End of Medium! Status will
be returned in the user's ECE if an attempt is made to write over

the number of granules already allocated.

Opening a File

Opening 2 file need not be requested by the user as this is impl-
iecit in the first read or write request.

When the ASG control command is given an
entry is made in a file code table and a Logical File Table is
built. by the system to record information about the file used.
This, however, does not imply that the file has been opened yet.

Closing a File

Closing a file is done in write mode, after the last record of a
file has been written onto the disc, by giving a Write EOF monitor
request. If the user wante to write the contents of the last buffer
onto a disc without cleging the file, he should give a Write EQS
request. This ie the case with the common object file ecreated by
the language processors, which do not have to close the /0 file

56

az this is done by the syatem when the Linkage Editor is called:

Pogitioning a File

It is possible for the user only to position the file at the firast
logical record. This is done by giving an Ifﬂ requeat with the

order to rewind the file.

Data Management Hequests

The Data Management package is activated by an Ifﬂ monitor re-

quest (LEM 1). The function which has to be performed is loaded
inteo the AT register, while the A8 register muet be loaded with
the addressz of an Event Control Block, containing the neceasary

parameters. The calling seguence is as follows:

LDK AT,CODE
LDKL AB,ECE
LEM

DATA 1

where:

the word CODE ies made up ae follows:

1] ORDER

i T 8 8w 15

bit B = 1: wait for completion of the event is impliecit in the
request.
= 0: control will be returned to the calling program after
initialization of the operation. To check for comp-
letion the program must give a Wait monitor request
(LEM 2).
bit 9 i not used, and must be reset to zero. (If it is 1, the
status /C010 will be returned).
URDER contains the function code:
/01,/02: Read a Record (Basic, Standard)
/05: Write a Record (Basic)

59

J06: Write a Record (Standard)

/07: Write a Record (Object, 4+4+4+4 tape format)
/08: Write a Record (Object, 8+8 tape format)
/22: Write EOF mark (Close a file)

/26: Vrite EOS mark

/30: Get information about a file code

/31: Rewind the file.

Notes:

When the order fﬁﬂ is given, the uger mugt specify the file in
ECE word 0; the ASCII characters 'DK' (physical files FO to FF)
or 'DL' (logical files) will be returned in ECB word 1;

the other words will be reset to zero, because
dise file codes are handled by the system.

Basic orders (01, 05) and Object Write orders (07, 08) are con-
verted to Standard Read/Write for dise files.

The standard ECE, to which register A8 points, has the following

layout:
il 78 15
ECBD EvantCharacter | File Code ¥ix
ECB1 Record Area Addreas X
ECBZ Aequested Length X
ECB3 EffactiveLongth ¥
ECB4 Status ¥
ECBS MatUsed X

The words marked X must be filled by the user.
Those marked Y must be reserved by the user, but will be filled
by the system.

ECE 0: BEvent Character: Bit 0 is set to 1 on completion of the
I/0 operation. The other bite are not used and reset to
ZEYO.
File Code: Defines the logical reference to the file.
ECE 1: ©Bpecifies the beginning address 46f the area where the

Tecord is stored in memory.

60

ECE 2:

ECE 3:

ECE 4:

ECE 5:

Length in characteres of the record area. (Words for basie
read on cards).

Number of characters which has actually been moved from
or to the record area. (Words for basic read on cards).
This word contains the status returned to the user pro-
gram by Data Management. See page 127 . In addition,
status /10 is returned when an attempt is made to write
beyond the last allocated granule of a file (End of
Medium) and for temporary files, when over 200 granules
are written.

ig not used with sequential acceseg method.

61

DIRECT ACCESS METHCD

When the direct accese method is chosen, the records within a file
may be organized in any manner and accessing a record may be done
at random, by specifying a file sector address from 0 to 1597.

This is possible because with this method a logical record is equi=-
valent to a physical record on the dige: one sector. When a dir-
ect access file is created, the records may be delivered in any
order. The system will create a granule table and allocate gran-
ules to the records (sectors) that are delivered. Each granule
address is noted in the table, and when the user wants to read =
particular record, he specifies the file sector address, upon which
the system will be able to find it with the aid of this granule
table. Thus, such a direct access file may be considered a keyed
file, where the relative number of the record (=sector) is the key.
Although the great advantage of a direct access file ig that the
ueer can read, write or update individual records without having to
scan or copy & whole file sequentially, he may nonethelese want to
be able to acceas such a file sequentially. If this is the case,
the individual records must be formatted in the same way as for a
sequential file, i.e. the sector format must be the same and the
records must be written sequentially and terminated with a 'WRITE
EQF' request.

Hecord Structure

With direct accese, a logical record is the same as a phyegical

regcord: a record is egual to a sector.

The first word contains the cylinder identification (used by the

disc driver to check the position of the head after a seek opera-

tion). The remaining 204 words may be used for data storage.

File Creation and Procegaing

A file is created when an Assign command or monitor request is
given. This reserves the required number of granules on the disc

where the records can then be written. Such a file can be made

62

permanent by meane of a Keep File control command.

When a requeegt 18 made, each record is transferred directly from
the user area to the dizc.

Only one granule is allocated initially, and the file is

extended granule by granule during its creation.
Random access files do not have to be closed by the user.

File Retriewval

Here lies the main advantage of a direct access file, becausze once
the file has been assigned, any sector record can be retrieved,
erased or updated and rewritten individually.

The gize of a file is fixed at creation time, when a granule table
is also written with an entry for each granule of the file. When
the file is catalogued by means of a KPF command, creation is
terminated and no more granules can be added. Therefore the user
must know the maximum size of the file at creation time (no more
than 1538 Eectors]

REead a Sector

This is done in the szame way as for sequential accese, the only
difference being that the user must gpecify in ECES the relative
number of the sector within the file (i.e. the file sector address,
a number from 0 to 1597), and specify / A for the read order in
register AY7. Moreover, he must supply the system with a 205-word
buffer in which the physical record will be stored. As mentioned

above, the first word contains the cylinder identification.

Write a Sector

Thie ie done in the same way as for sequential files, the only
difference being that the user must specify in ECBS the relative
number of the sector to be written into the file (2 number from
0 to 1597) and specify f B for the write order in register A7.

63

Moreover, he must supply the disc buffer in which the information
ig gtored: a 205-word buffer of which the first word will be re-
placed by the cylinder identification by the system (required

by the physiecal disc L/0 driver).

Data Management Reguests

The Data Management package is activated by an L/U monitor re-

quest (LKEM 1). The function which has to be performed is loaded
inte the AT register, while the AB register must be loaded with
the address of an Event Control Block, containing the necegsary

parametere. The calling sequence ie as followa:

LED AT ,CODE
LDEL A8,ECH
LEM

DATA 1

where:

the word CODE is made up as followe:

Q {RDER

o 7oA 40 15

bit 8 = 1: wait for completion of the Ijﬂ operation is implicit
in the request. |
= 0: control will be returned to the calling program after
initialization of the I/0 operation. To check for
completion, the program must give a Wait monitor
request (LEM 2).
bit 9 is not used and must be reset to zero. (If it is 1, the
status /CO10 will be returned).
ORDER contains the function code:
JOA: Read (Random)
J0B: Write (Random)
/30: Get information about a file cede.

fote: When the order /30 is given, the user must specify the file

code in ECE word 0; the ABII characters 'DL' will be re=-
turned in ECB word 1,

The other words will be
reget to smero, beczusge disc file codes are handled by the

gysten.

The standard ECB, pointed to by regiater A8, has the following

layout:
o P | 15
ECBO Evont Character | File Code X
ECE1 Disc Bulfer Address X
ECE2 Aeguested Lengin b
ECB3] Eftective Lengih k|
ECEa4 Status Y
ECES Relatwe Sector Mumber X

The words marked X must be filled by the user.
Those marked Y must be reserved by the user, but will be filled by

the system.

ECEO:

ECE1:

ECBZ:

ECE3:

ECB4:

ECB5:

Event Character: Bit O ie set to 1 on completion of the I/0
operation. The other bite are not used and reset to zero.
File Code: Defines the logical reference to the file.
Specifies the beginning address of the 205=word disc buffer.
Whatever the value of the requested length, 205 words will
be written on the diec or read into memary.

This word ig not affected.

This word contains the status returned to the user program
by Date Management when the sector transfer is terminated.
See page 127 . In addition, status f10 ig returned when an
attempt ig made to write beyond the last allocated granule
of a catalogued file and, for catalogued files, when over
200 granules are written.

Specifies the relative position of the sector within the

file, i.e. the file sector addrese.

65

Physical Disc Access

This is a direct access on a physical sector level. The Data
Management module is not used for this type of access, but speecial

orders are used in the monitor request (LKM1):

/11=physical read
/15=physical write

Moreover, the file code in the ECE must be one of the disc unit

file codes /PO to /FF.

Access ie done at sector level, where the sectors are numbered
consecutively from O to n. This implies that word 5 in the ECB

mist contain the disc sector logical address of the sector which is to
be accessed. The disc which is accessed must not be shared by the
user and Data Management, but it may be shared between a number

of other programs doing direct physical accese. An example of

this type of access is 'Dump Disc!.

66

8 Operation

The initial loading procedure is very simple:

The beootetrap ie leaded, either through the toggle switches or Dby
pushing the IPL button on the contreol panel, then the Initial
Program Loader {IPL} is loaded into memory, followed by the

monitor.

LOADING BOOTSTRAF AND IPL

The beotstrap can be loaded in one of two ways, depending on
whether the optional ROM bootstrap is included in the system or

not:
If net, the procedure is as follows:

gwiteh on the CPU
- load the bootstrap into the first 64 memory locations manually,

by means of the ftoggle swifches and the Load Memory button on
the control panel. The 64 bootstrap values can be found in
Appendix E. Then check by reading these locations out.

- get up the device parameters on the toggle switches, as shown
below, and load this walue into the A15 register.

- put the dise containing IPL and monitor into the disc drive,
push the START button on the drive and wait till the READY button
lights

- push the MC button

- load 0 into the AD register

- push the RUN button on the CPU control panel

- the IPL is now loaded into memory and it loads, in turn, the
monitor, after which the monitor initialization phase is started

with the typing out of the monitor identification.

If the ROM bootatrap is included in the CPU, which is highly re-

commended, the procedure is much simpler:

- switech on the CPU

- put the disec containing IPL and monitor into the disc drive, push
the START butfton on the dise unit and wait for the READY button to

light

67

- set up the device parameters on the toggle switches on the CPU,
as shown below, and load this value into the A15 register

- push the IPL button on the control panel. This leoads the boot-
strap into memory, which immediately loads the IPL from disc.
The IFL then loads the monitor and the monitor initialization
phase is started with the typing out of the monitor identifica-

tion.

The device parazmeters on the data switches must be get ag fellows:
8] 1 2 3 4 T 3]] 10 15

wheare:
bit O = {0 tape format used is 848
= 13 tape format used is 4x4

bit 1 = Q= the dewvice used is not a dise

= 11 the device used is a diasc

1

It

bit 2 is used only if bit 1
= (3 the disec used is a fixed-head disc

= 11 the disc used is a moving-head disc

bit 3 = 0D: the device iz commnected to the IfD processor

=13 the device is connected to the programmed channel

bite 4 to T are used to qualify the CIO Start command sent by
the bootgtrap and are transferred teo the addressed

control wnit on lineg BIO 12 fto 1% when regquired

bit B8 = 0: the control unit involved is a single deviece control
unit
=2 the control unit invelved is a multiple device con-
trol unit

bit 9 = 1: the disec used is an X1215 dise (P824)

bite 10

15 contain the device address.

68

Initial Program Loader (IPL)

The disc IFL program is written onto the disec when the dise is pre-
marked. It ie written in absclute binary, so, to enable it to run

anywhere in memory it does not contain any memory direct reference.

When loaded, the IPL reads and loads into memory from the disc from
which it has itself been loaded, starting from sector number f12
(the first two sectors of a file are reserved for the system). The

first four words of sector /12 contain:

- ptart address of the load module

- number of sectors used by this module
(This is the standard load format on disc: these words are gen-
erated by the disc linkage editor).

Hote:
As leng as 1t has been stored on the diee according to the IPL re-
quirements, any stand-alone program, even if it does not use the

disc, can be loaded into memory by the dise IPL.

Programs to be loaded by dise IPL

- must be in disc system load format (188 code words plus reloca-
tion per sector)

- must be catalogued on disc as a file starting at disc sector
logical address /10

- muet be built of consecutive granules.

STARTING A SESSION OR JOB

ATter the system has been loaded by IPL procedure, the cperator
must initialize the date and time. The system types out
DATE:

and the operator then answers by typing in the date as follows:

69

pp MM YY EBDER) or vy 1M 1D EHECEH

where DD,MM and YY are 2 characters giving day, month and year,
gaparated by a delimiter, which may be any character on the key-
board. Then the system types
TIME:
and the operator anewers by typing in the time as follows:

Be 1 5 €E)
where HH,MM are 2 decimal characters gspecifying hour and minute.
The control panel key must be in OLOCK positions if the time must

be updated automatically.
After the user has entered the time, the monitor types out:

BATCH PROCESSINGT to which the user can reply with:

YT«DNDA> if he wants to work in batch proceseing mode, where <DNDA>
(device name + device address) is the new assignment for file code /E0; or

@)

which will be followed by system output of

B

after which the user can assign /EO:

AS<INDA>, /EO
N if he wants to work in converesational mode.

If batch processing mode is chosen the system starts reading the
control commands (on cards or punched tape) immediately. The first

of these commands must be & JOB command.

If conversational mode is chosen, the system reads the user ident-
ification from the device with file code /E0. This will ususlly be
the typewriter, =zo the system types out:

USERID:

and the user types in his user identification in one of the two
following ways:

/<disc number?,{userij} or

cugserid®
rIn the first case, the system will scan only the disc specified by
/<disc number> to find the given user identification.

In the second case, the system will scan the catalogue of each on-
line disc, starting with diec unit FO, until it finds the user
identification specified. If SYSTEM is specified as user ident-
ification, the first user of disc unit /FO will be taken, whatever
~heame may be stored for this user on the disc. In such cases we
have a SYSTEM session.

70

If the user is not yet present on a disc and has no entry in the
Catalogue he must first declare himeelf to the system in order

to be regietered in the Catalogue and to obtain space for a dir-
ectory for his own library. This muet be done in a se-ecalled
system session, i.e. after the eystem message USERID: the user
types in SYSTEM and gives a DCU control command with his own user
identification. The system will then make an entry for him in the
Catalogue and allocate a granule for his library directory. Then
the user closes this session with the control command BYE, after
which the system again types out USERID: Now the user may start

with his own user identification and proceed as he wighes.

Note:
1f the user reply to the message USERID: is

STSTEM

a system session is= opened; however, if the user types in
/TF0, SYSTEM

the CCI will look for & user named SYSTEM on dise/F0 and the

sesgion opened is not a system seesion.

In cases of errors, the following messages may be output:

- INPUT COMMAND Ifﬂ ERROR

in T/0 error has been detected during the reading of the user
identification. The ueger muet type in a new userid on the type-
writer.

- I/0 ERROR

An I/ﬂ error has been detected during the loading of the disec
allocation table from the disc into memory. The user must type his
userid again on the typewriter.

- USERID UNKNOWN

The userid szpecified has not been found on any of the dizses. The

uger muet type in a new userid on the typewriter.

71

BATCH PROCESSING

Batch processing is gtarted at system initialization time or when
the user switches from conversational to batch processing mode by
giving a BYE BYE control command.

The first command of a batch must always be JOB. The control
command input stream, i.e. the sequence of CCI commands necegsary
to perform one or a series of Jjobs, is punched on cards or paper
tape or cutput on disc and executed sequentially, without operator
intervention.

The advantage of batch proceseing ie, that when an error or abort
occurs, the system simply looke for and starts the next Jjob. When
an error occurs, only the commands JOB, BYE and END are recognized
and other commands up to one of these three are skipped. Because a
Job often requires many CCI commands, in more or less the =ame
sequence, these commands can be stored on disc as catalogued pro-
cedures, in which case the user will only have to specify the
procedure name and any necessary parameters in the input stream.
For this feature see page 23

The following restrictions must be taken into account:

- a program is not aborted when it reads the next job;

- there is no limit on the number of cards read, lines printed or

records punched, nor on the execution time.

A batch is gtarted as follows:
- put the batch command sequence on the input stream device (tape
or card reader)

- first command must be a JOB command

Note:When a program exits, register A7 containes an exit code in
its right character. If bit 8§ of A7 is set to 1, in batch
mode the whole batch will be aborted up to a following JOB
or BYE iy BYE control command. The exit coder are aspecified

under the monitor reguests.

' 2

CHANGING A DISC PACK

The procedure is different depending on the type of didepending on
changed:

- If it is the system disc, changing it must be followed
by reloading the system by IPL procedure as degcribed
in the previous paragraph.

- If it is not the system disec, as soon as the disc becomes
ready, an interrupt iz sent to the monifor. Intil the
Control Command Interpreter is loaded again to re-initiu-
lize the system, reading or writing on the new disc is

not possible and a non-operational status will be returned.

411 file codes which had been assigned to the disec unit which be-
comes ready, are scratched, for catalogued as well as for temporary
files. The codes assigned to the other disc unite will not be afi-
ected.

Note:

If the user changes the disc pack containing the eurrent gession
uger, the system will close the session by simulating an antomatic
BYE control command and ask for the next user identification by

typing USERID:

COPYING OR UPDATING THE SYSTEM DISC

Two examples are given to show how a copy can be made of the System

Disec onto another disec and how a System Disc can be updated.

Example 1
After a new dise has been formatted by means of the PREMARE disc

initialization program, it iz mounted on the unit aessigned to file
code /P1. The system is assigned to the disc with file code /FO.
/F0 must be copied onto /F1. It is assumed that the first user of

3

the System Disc (i.e. the system itself) is catalogued as OLDSYSTHM.

The following command seguence must be given:

USERID: /F1,NEWSYSTM (NEWSYSTM must have been declared during Premark)
SVU OLDSYSTM, /FO

It is possible to replace the command SVD by

MOV

EFF

for each of the system components as they appear in the directory

of OLDSYSTM. The monitor must be the first file and be stored on

congecutive granules.

Note:
This procedure may be used only once and it migt be dene on a clean
disc, i.e. one which has only been Premarked. If this procedure is
done a second time for the same dise, the disc will be destroyed.

Te replace the supervisor a second time it is better to use the pro-

cedure described below, in example 2.

Example 2

It is assumed that disc number 1 contains the new system and that
disc number 2 has to be updated. The system to be used is that of
digsc number 1. Se, /FO is assigned to dise number 1, /F1 is agsigned
to disec number 2. The monitor of disc number 1 is catalogued gz MON1

in the directory.

The following command sequence should be given:

USERID: SYSTEM

MOV MON1,/L

RSU /P

EYE

It is also possible to use the eystem of dige number 2y in which
case the command sequence is different:

/FO is assigned to disc number 2, /F1 is aseigned to dise number 1.
The first user (i.e. the system) of disc number 1 ie catalogued as

74

NEWSYSTM and ite first file iz MON2. Then:
USERID: SYSTEM

MOV MOW2, /L, NEWSYSTM

RSU /FO

15

SYSTEM MESSAGES

Apart from the messages which may reeult from an error in a& control

command the following messages may be output by the system:

Abort Mezzages

When a program is aborted for any reason, messages are output for
the user on the devices with file code 01 and/or file code 02,
specifying:
- the location where the abort occcurred in the program:

PROG ABORTED AT XXX
- the reason for the abort:

K0T WIRED INSTRUCTION
OVERFLOW IN SIMULATION ROUTINE SAVE AREA
BEUFFER AREA DESTROYED

TOO MANY SCHEDULED LABELS
OPERATOR ABORT
BUFFER ALLOCATION OVERFLOW
DISE OVERFLOW
DISE QUEUE OVERFLOW
MEMORY OVERFLOW DURING LOADING FHASE
- the contente of the PSW and the registers at the moment of the
abort.

Peripheral Tnit Error Messages

- When an error ocecurs during an I/0 operation, messages are sent
to the operator, giving the status of the operation as follows:
PU DNXX,ST,RY
where:
DN is the device name
XX is the device address
8T is the device status
RY invites the operator to correct the error and retry the last
cperation. In this case the operator must press the interrupt
(INT) button on the CPU control panel and type in
RY XX

after he has fixed the error or, if the error cannot be corrected,

76

he may release the operation on that device by pressing the INT
button and {typing
RD XX

DEERw<disc address>_«cylinder/track/physical sector number>

<gtatus>» is a message to aignify a disc error. 1t provides the
address of the disc asz well as the cylinder, track and =mector
number {given in one number) and the hardware status (see Appen-
dix D). If the status is /8000, the disc has become ready, but

has not been reinitialized by the Contrel Command Interpreter.

17

