
Transputer networks
using the IMS B003

INMOS Technical Note 13

Glenn Hill

February 1987
72-TCH-013-01

You may not:

1. Modify the Materials or use them for any commercial purpose, or any public
display, performance, sale or rental;

2. Remove any copyright or other proprietary notices from the Materials;

This document is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.

INMOS, IMS, OCCAM are trademarks of INMOS Limited.
INMOS Limited is a member of the SGS-THOMSON Microelectronics Group.

2

Contents

1 Introduction 4

2 Ring Structure 5

3 Two-dimensional Array 7

4 Folded Binary Structure 10

5 Cube Connected Cycle 14

6 How to Introduce an Extra Node for Booting Purposes 18

A Wiring Diagrams for Application Examples 23
A.1 16 Node Ring Structure . 23
A.2 64 Node 2-dimensional Array 23
A.3 64 Node Folded Binary Structure 25
A.4 64 Node Cube connected Cycle 26
A.5 16 Node 2-dimensional Array with Booting Processor 27

3

1 Introduction

Each B003 has four transputers connected in as ring as shown in figure 1.
There are therefore two links per transputer which can be connected ex-
ternally. The purpose of this application note is to show that there are a
wide variety of networks that can be configured using only B003 boards.
In each example given, the same arbitrary process (node), which has not
been defined is extracted to all transputers in the network. This of course
may not generally be the case, but it is not difficult to modify the program
examples to extract separately defined SC procs to individual transputers.
For some of the configurations it is necessary to define a mapping function.
This simply returns an integer in the range 0..3 which indicates which of
the transputers (figure 1) on the B003 is being extracted to. This is neces-
sary since an occam channel will be placed at a different hard link address
according to its position in the B003 ring.

Figure 1: B003 Configurations

In general, in each configuration, arrays of channels are declared and each
channel within these arrays is placed at two link addresses (one input and
one output) of two different transputers which are connected to each other.
The appropriate index for the array of channels, like the mapping index,
is a function of the machine identifier. A mapping array is also declared
for input and output channels, which contains a list of link addresses. The
mapping index is used to reference these arrays so that the channel can be
placed at the correct link address. Having placed the channels in this way,
they are passed as parameters to the SC proc for extraction.

A brief explanation is given for each of the examples covered, together with
a wiring diagram and an Occam program which can be used to configure
the network. Each example may be expanded or reduced to an alternative
network dimension by changing the value of n, but n must be even. The
wiring diagrams given by the transputer development system are given in
an appendix.

4

2 Ring Structure

Figure 2: 16-node ring

A ring of n transputers can be implemented with n/4 B003 boards. Two
arrays of n channels are declared (clockwise and anticlockwise) so that com-
munications around the ring is bidirectional. The transputers are connected
as shown in figure 2 (for n = 16), where it can be seen that each machine
has a unique identifier in the range 0..(n-1). This identifier is passed as a
parameter to the process ”node” together with four channels (two input,
two output) from the array of channels, mentioned above.

{{{ 16-node two-directinal ring configured for a B003 application
{{{ define link/channel numbers - T4
VAL link0in IS 4:
VAL link0out IS 0:
VAL link1in IS 5:
VAL link1out IS 1:
VAL link2in IS 6:
VAL link2out IS 2:
VAL link3in IS 7:
VAL link3out IS 3:
}}}
{{{ create internal mapping arrays
VAL clockwise.in IS [link1in, link3in, link3in, link3in]:

5

VAL anti.clockwise.in IS [link2in, link2in, link2in, link0in]:
VAL clockwise.out IS [link2out, link2out, link2out, link0out]:
VAL anti.clockwise.out IS [link1out, link3out, link3out, link3out]:

-- each soft channel is associated with a table which is indexed
-- when the soft channel is placed on to a hard channel.
}}}
{{{ declare size of structure

VAL n IS 16: -- must be multiple of four
VAL nodes IS n:
}}}
{{{ declare sizes of channels
[nodes] CHAN clockwise,

anti.clockwise:
}}}

{{{ SC node
-- Separately compiled process "node" to be
-- extracted to all nodes.

}}}

{{{ two-directional ring
PLACED PAR machine = 0 FOR nodes
PROCESSOR machine T4
{{{ evaluate indices
VAL clock.in IS (machine + (nodes-1)) \ nodes:
VAL clock.out IS machine:
VAL anti.clock.in IS machine:
VAL anti.clock.out IS (machine + (nodes-1)) \ nodes:
VAL map.index IS machine \ 4:

-- position of node within
-- B003 group (0..3)

}}}
{{{ place channels
PLACE clockwise [clock.in] AT clockwise.in [map.index]:
PLACE clockwise [clock.out] AT clockwise.out [map.index]:
PLACE anti.clockwise [anti.clock.in] AT anti.clockwise.in [map.index]:
PLACE anti.clockwise [anti.clock.out] AT anti.clockwise.out [map.index]:
}}}
node (machine,

clockwise [clock.in],
clockwise [clock.out],
anti.clockwise [anti.clock.in],
anti.clockwise [anti.clock.out])

}}}
}}}

6

3 Two-dimensional Array

Figure 3: 8 X 8 two-dimensional array

A two dimensional array of (n x n) transputers can be implemented with (n
x n) / 4 B003 boards. The configuration should be connected as shown in
figure 3 (for n=8). Four arrays of channels (size ”nodes” - number of trans-
puters in network) are declared (left.to.right, right.to.left, top.to.bottom and
bottom.to.top), so that each node can send or receive data to or from any
of its four neighbours. Eight placed channels (four input, four output) are
passed as parameters to the SC proc ”node”. Note that if a square array is
not required, p and q can be set to any even number.

{{{ 64-node two-dimensional array configured for a B003 application
{{{ define link/channel numbers - T4
VAL link0in IS 4:
VAL link0out IS 0:
VAL link1in IS 5:
VAL link1out IS 1:
VAL link2in IS 6:
VAL link2out IS 2:
VAL link3in IS 7:

7

VAL link3out IS 3:
}}}
{{{ create internal mapping arrays
VAL left.to.right.in IS [link0in, link3in, link1in, link2in]:
VAL right.to.left.in IS [link2in, link1in, link3in, link0in]:
VAL top.to.bottom.in IS [link1in, link0in, link2in, link3in]:
VAL bottom.to.top.in IS [link3in, link2in, link0in, link1in]:
VAL left.to.right.out IS [link2out, link1out, link3out, link0out]:
VAL right.to.left.out IS [link0out, link3out, link1out, link2out]:
VAL top.to.bottom.out IS [link3out, link2out, link0out, link1out]:
VAL bottom.to.top.out IS [link1out, link0out, link2out, link3out]:

-- each soft channel is associated with a table which is indexed
-- when the soft channel is placed on to a hard channel.
}}}
{{{ declare size of structure
VAL n IS 8:
VAL p IS n: -- x dimension of array
VAL q IS n: -- y dimension of array
VAL nodes IS p * q:
}}}
{{{ declare sizes channels
[nodes] CHAN left.to.right,

right.to.left,
top.to.bottom,
bottom.to.top:

}}}

{{{ SC node
-- Separately compiled process "node" to be
-- extracted to all nodes.

}}}

{{{ two-dimensional array (placed)
PLACED PAR i = 0 FOR p
PLACED PAR j = 0 FOR q
VAL machine IS j + (i * q):
PROCESSOR machine T4
{{{ evaluate indices
VAL left IS (machine + (nodes-q)) \ nodes:
VAL right IS machine:
VAL bottom IS machine:
VAL dec.j IS (j + (q-1)) \ q:
VAL top IS dec.j + (i * q):
VAL map.index IS ((j\2)*2) + (i\2):

-- position of node within
-- B003 group (0..3)

}}}
{{{ place channels

8

PLACE left.to.right [left] AT left.to.right.in [map.index]:
PLACE left.to.right [right] AT left.to.right.out [map.index]:
PLACE right.to.left [right] AT right.to.left.in [map.index]:
PLACE right.to.left [left] AT right.to.left.out [map.index]:
PLACE top.to.bottom [top] AT top.to.bottom.in [map.index]:
PLACE top.to.bottom [bottom] AT top.to.bottom.out [map.index]:
PLACE bottom.to.top [bottom] AT bottom.to.top.in [map.index]:
PLACE bottom.to.top [top] AT bottom.to.top.out [map.index]:
}}}
node (machine,

left.to.right [left],
left.to.right [right],
right.to.left [right],
right.to.left [left],
top.to.bottom [top],
top.to.bottom [bottom],
bottom.to.top [bottom],
bottom.to.top [top])

}}}
}}}

9

4 Folded Binary Structure

Figure 4: 64 Node Folded Binary Structure

A folded binary structure of size n x 2n can be implemented with (n x 2n) /
4 B003 boards. This configuration should be connected as shown in figures 4
and 5) (for n=4). Note that figures 4 and 5 are topographically equivalent.
Figure 5 merely makes it easier to see how the boards are connected exter-
nally. Four arrays of channels of dimension ”nodes” (number of transputers
in network) are declared: adj.left, adj.right, diag.left and diag.right where
”adj” is a mnemonic for adjacent connection and ”diag” for a diagonal con-
nection. This enables each transputer to send or receive data to or from any
of its four neighbours. Eight placed channels (four input, four output) are
passed as parameters to the SC proc ”node”.

10

{{{ 64 node Folded Binary Structure configured for a B003 application
{{{ define link/channel numbers - T4
VAL link0in IS 4:
VAL link0out IS 0:
VAL link1in IS 5:
VAL link1out IS 1:
VAL link2in IS 6:
VAL link2out IS 2:
VAL link3in IS 7:
VAL link3out IS 3:
}}}
{{{ create internal mapping arrays
VAL adj.left.in IS [link2in, link0in, link2in, link1in]:
VAL adj.right.in IS [link1in, link3in, link1in, link3in]:
VAL diag.left.in IS [link3in, link1in, link3in, link1in]:
VAL diag.right.in IS [link0in, link2in, link1in, link2in]:
VAL adj.left.out IS [link1out, link3out, link1out, link3out]:
VAL adj.right.out IS [link2out, link0out, link2out, link1out]:
VAL diag.left.out IS [link0out, link2out, link0out, link2out]:
VAL diag.right.out IS [link3out, link1out, link3out, link1out]:

-- each soft channel is associated with a table which is indexed
-- when the soft channel is placed on to a hard channel.
}}}
{{{ declare size of structure
VAL n IS 4:
VAL p IS n, -- width of FBS (minimum is 2)

q IS (1 << n): -- height of FBS
VAL nodes IS p * q:
}}}
{{{ declare sizes channels
[nodes] CHAN adj.left, -- adj = adjacent connection

adj.right, -- diag = diagonal connection
diag.left, -- left = right to left direction
diag.right: -- right = left to right direction

}}}

{{{ SC node
-- Separately compiled process "node" to be
-- extracted to all nodes.

}}}

{{{ Folded Binary Structure (placed)
PLACED PAR i = 0 FOR p
PLACED PAR j = 0 FOR q
VAL this.machine IS j + (i * q):
PROCESSOR this.machine T4
{{{ evaluate indices
VAL dec.i IS (i + (p-1)) \ p: -- i value of node on LHS

11

VAL a.left IS (dec.i * q) + j: -- index of adjacent
-- channel on LHS

VAL a.right IS (q * i) + j: -- index of adjacent
-- channel on RHS

VAL d.root IS a.left:
VAL diff IS 1 << dec.i:
VAL test.bit IS (j >> dec.i) /\ 1:
VAL d.left IS d.root + (diff * (-((test.bit * 2) - 1))):

-- index of diagonal
-- channel on LHS

VAL d.right IS a.right: -- index of diagonal
-- channel on RHS

VAL group IS (1<<i) >> (i\2):
-- size of B003 group in
-- which this node is
-- interleaved

VAL map.index IS (((j\(group<<1))/group)<<1) + (i\2):
-- position of node
-- within B003 group
-- (0..3)

}}}
{{{ place channels
PLACE adj.left [a.right] AT adj.left.in [map.index]
PLACE adj.left [a.left] AT adj.left.out [map.index]
PLACE adj.right [a.left] AT adj.right.in [map.index]
PLACE adj.right [a.right] AT adj.right.out [map.index]
PLACE diag.left [d.right] AT diag.left.in [map.index]
PLACE diag.left [d.left] AT diag.left.out [map.index]
PLACE diag.right [d.left] AT diag.right.in [map.index]
PLACE diag.right [d.right] AT diag.right.out [map.index] }}}
node (this.machine,

adj.right [a.right],
adj.left [a.right],
adj.right [a.left],
adj.left [a.left],
diag.right [d.right],
diag.left [d.right],
diag.right [d.left],
diag.left [d.left])

}}}
}}}

Figure 5 shows how the structure in Figure 4 can be mapped onto 16 B003s.

12

Figure 5: 64 Node Folded Binary Structure (mapped)

13

5 Cube Connected Cycle

Figure 6: 64 Node Cube Connected Cycle

A cube connected cycle of size n x 2n can be implemented with (n x 2n)
/ 4 B003 boards. A connection diagram for such a network, for n=4, is
shown in figures 6 and 7 (Figure 7 shows how nodes map to B003s). Three
arrays of channels are declared of dimension ”nodes” (number of transputers
in network): clockwise.route, anti.clockwise.route and cross.route, where
”clockwise” and ”anti.clockwise” represent channels connected to nodes in
the same row, and ”cross” represents a channel connected to a different
row. Figures 6 and 7 are topographically equivalent to a four-dimensional
hypercube with four nodes at each ”corner”. Six placed channels (three
input, three output) are passed as parameters to the SC proc ”node”.

14

{{{ 64 node Cube Connected Cycle (3-link)- B003 configuration
{{{ define link/channel numbers - T4
VAL link0in IS 4:
VAL link0out IS 0:
VAL link1in IS 5:
VAL link1out IS 1:
VAL link2in IS 6:
VAL link2out IS 2:
VAL link3in IS 7:
VAL link3out IS 3:
}}}

{{{ declare size of structure
VAL p IS 6, -- width of CCC (minimum is 2)

q IS (1 << p): -- height of CCC
VAL nodes IS p * q:
}}}

{{{ declare sizes channels
[nodes] CHAN clockwise.route, -- clockwise cycle links

anti.clockwise.route, -- anti-clockwise cycle links
cross.route: -- cross links to other dimensions

}}}

{{{ create internal mapping arrays
VAL clockwise.in.map IS [link0in, link0in, link2in, link3in]:
VAL anti.clockwise.in.map IS [link3in, link2in, link0in, link0in]:
VAL cross.in.map IS [link2in, link3in, link1in, link1in]:
VAL clockwise.out.map IS [link3out, link2out, link0out, link0out]:
VAL anti.clockwise.out.map IS [link0out, link0out, link2out, link3out]:
VAL cross.out.map IS [link2out, link3out, link1out, link1out]:

-- each soft channel has a table which is indexed
-- when the soft channel is placed on to a hard channel.
}}}

{{{ SC node
-- Separately compiled process to be
-- extracted to all nodes.

}}}

{{{ Cube-connected Cycle
PLACED PAR ring.pos = 0 FOR p
PLACED PAR co.ord = 0 FOR q
VAL this.machine IS co.ord + (ring.pos * q):
PROCESSOR this.machine T4
{{{ define indices and value parameters for process call
VAL dec.ring.pos IS (ring.pos + (p -1)) \ p:

-- ring.pos value of node on LHS

15

VAL inc.ring.pos IS (ring.pos + 1) \ p:
-- ring.pos value of node on RHS

VAL machine IS (q * ring.pos) + co.ord: -- node identifier
VAL clockwise.in IS (q * dec.ring.pos) + co.ord:

-- index for clockwise.route on LHS
VAL anti.clockwise.in IS (q * inc.ring.pos) + co.ord:

-- index for anti.clockwise.route on RHS
VAL clockwise.out IS machine:

-- index for clockwise.route on RHS
VAL anti.clockwise.out IS machine:

-- index for anti.clockwise.route on LHS
VAL cross.in IS (co.ord >< (1<<ring.pos)) + (q * ring.pos):
VAL cross.out IS machine:

-- indices for cross.route
VAL map.index IS ((ring.pos\2)*2):

+ ((co.ord/(1<<(2*(ring.pos/2))))\2):
}}}

{{{ place channels
PLACE anti.clockwise.route [anti.clockwise.out] AT

anti.clockwise.out.map [map.index]:
PLACE clockwise.route [clockwise.in] AT

clockwise.in.map [map.index]:
PLACE anti.clockwise.route [anti.clockwise.in] AT

anti.clockwise.in.map [map.index]:
PLACE clockwise.route [clockwise.out] AT

clockwise.out.map [map.index]:
PLACE cross.route [cross.out] AT

cross.out.map [map.index]:
PLACE cross.route [cross.in] AT

cross.in.map [map.index]:
}}}

node (machine,
anti.clockwise.route [anti.clockwise.out],
clockwise.route [clockwise.in],
anti.clockwise.route [anti.clockwise.in],
clockwise.route [clockwise.out],
cross.route [cross.out],
cross.route [cross.in])

}}}
}}}

16

Figure 7: 64 Node Cube Connected Cycle (mapped)

17

6 How to Introduce an Extra Node for Booting
Purposes

Figure 8: 4 X 4 two-dimensional array (with extra node for booting)

For the configurations above which use all four links of every transputer,
there is no provision for booting the code which on a B003 board must be
done via a transputer link. The problem has been avoided so far since it
destroys the symmetry of the network and makes the program unnecessarily
complicated for these introductory examples. For completeness, this chapter
shows one way that the problem may be solved for a 16 node two-dimensional
array. An extra transputer, which may be on a B001 or B002 board, is used
as the boot node which can be connected via a UART to a host machine.
This processor is by convention node 0, which means that the identifier of
all other nodes must be incremented by one (figure 8).

{{{
{{{ define link/channel numbers - T4
VAL link0in IS 4:
VAL link0out IS 0:
VAL link1in IS 5:
VAL link1out IS 1:
VAL link2in IS 6:
VAL link2out IS 2:
VAL link3in IS 7:
VAL link3out IS 3:
}}}
{{{ create internal mapping arrays
VAL left.to.right.in IS [link0in, link3in, link1in, link2in]:

18

VAL right.to.left.in IS [link2in, link1in, link3in, link0in]:
VAL top.to.bottom.in IS [link1in, link0in, link2in, link3in]:
VAL bottom.to.top.in IS [link3in, link2in, link0in, link1in]:
VAL left.to.right.out IS [link2out, link1out, link3out, link0out]:
VAL right.to.left.out IS [link0out, link3out, link1out, link2out]:
VAL top.to.bottom.out IS [link3out, link2out, link0out, link1out]:
VAL bottom.to.top.out IS [link1out, link0out, link2out, link3out]:

-- each soft channel is associated with a table which is indexed
-- when the soft channel is placed on to a hard channel.
}}}
{{{ declare size of structure
VAL n IS 4:
VAL p IS n: -- x dimension of array
VAL q IS n: -- y dimension of array
VAL nodes IS p * q:
}}}
{{{ declare sizes channels
[nodes] CHAN left.to.right,

right.to.left:
[nodes + 1] CHAN top.to.bottom,

bottom.to.top:
}}}

{{{ SC root.node
-- Separately compiled process "root.node"
-- to be extracted to node 0.

}}}

{{{ SC node
-- Separately compiled process "node" to be
-- extracted to all other nodes.

}}}

-- "machine" is the node identifier.
-- "dec.machine" is one less than the node identifier and is used
-- to index the arrays of channels that link the nodes

PLACED PAR
{{{ root node
{{{ declare constant indices
VAL bottom IS q-1:
VAL top IS nodes:
}}}
PROCESSOR 0 T4
{{{ place channels
PLACE top.to.bottom [top] AT link0out:
PLACE top.to.bottom [bottom] AT link1in:
PLACE bottom.to.top [bottom] AT link1out:

19

PLACE bottom.to.top [top] AT link0in:
}}}
root.node (top.to.bottom [top],

top.to.bottom [bottom],
bottom.to.top [bottom],
bottom.to.top [top])

}}}
{{{ node 1
{{{ declare constant indices
VAL i IS 0:
VAL j IS 0:
VAL dec.machine IS 0:
VAL left IS (dec.machine + (nodes-q)) \ nodes:
VAL right IS dec.machine:
VAL bottom IS dec.machine:
VAL top IS nodes:
VAL map.index IS ((j\2)*2) + (i\2):
}}}
PROCESSOR 1 T4
{{{ place channels
PLACE left.to.right [left] AT left.to.right.in [map.index]:
PLACE left.to.right [right] AT left.to.right.out [map.index]:
PLACE right.to.left [right] AT right.to.left.in [map.index]:
PLACE right.to.left [left] AT right.to.left.out [map.indexr:
PLACE top.to.bottom [top] AT top.to.bottom.in [map.index]:
PLACE top.to.bottom [bottom] AT top.to.bottom.out [map.index]:
PLACE bottom.to.top [bottom] AT bottom.to.top.in [map.index]:
PLACE bottom.to.top [top] AT bottom.to.top.out [map.indexl:
}}}
node (1,

left.to.right [left],
left.to.right [right],
right.to.left [right],
right.to.left [left],
top.to.bottom [top],
top.to.bottom [bottom],
bottom.to.top [bottom],
bottom.to.top [top])

}}}
{{{ node q
{{{ declare constant indices
VAL i IS 0:
VAL j IS q-1:
VAL dec.machine IS q-1:
VAL left IS (dec.machine + (nodes-q)) \ nodes:
VAL right IS dec.machine:
VAL bottom IS dec.machine:
VAL dec.j IS (j + (q-1)) \ q:
VAL top IS dec.j + (i * q):

20

VAL map.index IS ((j\2)*2) + (i\2):
}}}
PROCESSOR q T4
{{{ place channels
PLACE left.to.right [left] AT left.to.right.in [map.index]:
PLACE left.to.right [right] AT left.to.right.out [map.index]:
PLACE right.to.left [right] AT right.to.left.in [map.index]:
PLACE right.to.left [left] AT right.to.left.out [map.index]:
PLACE top.to.bottom [top] AT top.to.bottom.in [map.index]:
PLACE top.to.bottom [bottom] AT top.to.bottom.out [map.index]:
PLACE bottom.to.top [bottom] AT bottom.to.top.in [map.index]:
PLACE bottom.to.top [top] AT bottom.to.top.out [map.index]:
}}}
node (q,

left.to.right [left],
left.to.right [right],
right.to.left [right],
right.to.left [left],
top.to.bottom [top],
top.to.bottom [bottom],
bottom.to.top [bottom],
bottom.to.top [top])

}}}
VAL i IS 0:
PLACED PAR j = 1 FOR (q-2)
VAL dec.machine IS j + (i * q):
VAL machine IS dec.machine + 1:
PROCESSOR machine T4
{{{ evaluate indices
VAL left IS (dec.machine + (nodes-q)) \ nodes:
VAL right IS dec.machine:
VAL bottom IS dec.machine:
VAL dec.j IS (j + (q-1)) \ q:
VAL top IS dec.j + (i * q):
VAL map.index IS ((j\2)*2) + (i\2):

-- position of node within
-- B003 group (0-3)

}}}
{{{ place channels
PLACE left.to.right [left] AT lert.to.right.in [map.index]:
PLACE left.to.right [right] AT left.to.right.out [map.index]:
PLACE right.to.left [right] AT right.to.left.in [map.index]:
PLACE right.to.left [left] AT right.to.left.out [map.index]:
PLACE top.to.bottom [top] AT top.to.bottom.in [map.index]:
PLACE top.to.bottom [bottom] AT top.to.bottom.out [map.index]:
PLACE bottom.to.top [bottom] AT bottom.to.top.in [map.index]:
PLACE bottom.to.top [top] AT bottom.to.top.out [map.index]:
}}}
node (machine,

21

left.to.right [left],
left.to.right [right],
right.to.left [right],
right.to.left [left],
top.to.bottom [top],
top.to.bottom [bottom],
bottom.to.top [bottom],
bottom.to.top [top])

PLACED PAR i = 1 FOR (p-1)
PLACED PAR j = 0 FOR q
VAL dec.machine IS j + (i * q):
VAL machine IS dec.machine + 1:
PROCESSOR machine T4
{{{ evaluate indices
VAL left IS (dec.machine + (nodes-q)) \ nodes:
VAL right IS dec.machine:
VAL bottom IS dec.machine:
VAL dec.j IS (j + (q-1)) \ q:
VAL top IS dec.j + (i * q):
VAL map.index IS ((j\2)*2) + (i\2):

-- position of node -- within
-- B003 group (0..3)

}}}
{{{ place channels
PLACE left.to.right [left] AT left.to.right.in [map.index]:
PLACE left.to.right [right] AT left.to.right.out [map.index]:
PLACE right.to.left [right] AT right.to.left.in [map.index]:
PLACE right.to.left [left] AT right.to.left.out [map.index]:
PLACE top.to.bottom [top] AT top.to.bottom.in [map.index]:
PLACE top.to.bottom [bottom] AT top.to.bottom.out [map.index]:
PLACE bottom.to.top [bottom] AT bottom.to.top.in [map.index]:
PLACE bottom.to.top [top] AT bottom.to.top.out [map.index]:
}}}
node (machine,

left.to.right [left],
left.to.right [right],
right.to.left [right],
right.to.left [left],
top.to.bottom [top],
top.to.bottom [bottom],
bottom.to.top [bottom],
bottom.to.top [top])

}}}

22

A Wiring Diagrams for Application Examples

This appendix includes the wiring diagrams that have been created with
the transputer development system (TDS) for the previous examples. Only
link 0 and link 1 connections have been included since links 2 and 3 are
internally connected on the B003 board.

A.1 16 Node Ring Structure

{{{ wiring diagram
Connectivity Diagram

occam 2

connect processor 0 link 1 to processor 15 link 0
connect processor 3 link 0 to processor 4 link 1
connect processor 7 link 0 to processor 8 link 1
connect processor 11 link 0 to processor 12 link 1
}}}

A.2 64 Node 2-dimensional Array

{{{ wiring diagram
Connectivity Diagram

occam 2

connect processor 0 link 0 to processor 56 link 1
connect processor 0 link 1 to processor 7 link 0
connect processor 1 link 0 to processor 2 link 1
connect processor 1 link 1 to processor 57 link 0
connect processor 2 link 0 to processor 58 link 1
connect processor 3 link 0 to processor 4 link 1
connect processor 3 link 1 to processor 59 link 0
connect processor 4 link 0 to processor 60 link 1
connect processor 5 link 0 to processor 6 link 1
connect processor 5 link 1 to processor 61 link 0
connect processor 6 link 0 to processor 62 link 1
connect processor 7 link 1 to processor 63 link 0
connect processor 8 link 0 to processor 15 link 1
connect processor 8 link 1 to processor 16 link 0
connect processor 9 link 0 to processor 17 link 1
connect processor 9 link 1 to processor 10 link 0
connect processor 10 link 1 to processor 18 link 0

23

connect processor 11 link 0 to processor 19 link 1
connect processor 11 link 1 to processor 12 link 0
connect processor 12 link 1 to processor 20 link 0
connect processor 13 link 0 to processor 21 link 1
connect processor 13 link 1 to processor 14 link 0
connect processor 14 link 1 to processor 22 link 0
connect processor 15 link 0 to processor 23 link 1
connect processor 16 link 1 to processor 23 link 0
connect processor 17 link 0 to processor 18 link 1
connect processor 19 link 0 to processor 20 link 1
connect processor 21 link 0 to processor 22 link 1
connect processor 24 link 0 to processor 31 link 1
connect processor 24 link 1 to processor 32 link 0
connect processor 25 link 0 to processor 33 link 1
connect processor 25 link 1 to processor 26 link 0
connect processor 26 link 1 to processor 34 link 0
connect processor 27 link 0 to processor 35 link 1
connect processor 27 link 1 to processor 28 link 0
connect processor 28 link 1 to processor 36 link 0
connect processor 29 link 0 to processor 37 link 1
connect processor 29 link 1 to processor 30 link 0
connect processor 30 link 1 to processor 38 link 0
connect processor 31 link 0 to processor 39 link 1
connect processor 32 link 1 to processor 39 link 0
connect processor 33 link 0 to processor 34 link 1
connect processor 35 link 0 to processor 36 link 1
connect processor 37 link 0 to processor 38 link 1
connect processor 40 link 0 to processor 47 link 1
connect processor 40 link 1 to processor 48 link 0
connect processor 41 link 0 to processor 49 link 1
connect processor 41 link 1 to processor 42 link 0
connect processor 42 link 1 to processor 50 link 0
connect processor 43 link 0 to processor 51 link 1
connect processor 43 link 1 to processor 44 link 0
connect processor 44 link 1 to processor 52 link 0
connect processor 45 link 0 to processor 53 link 1
connect processor 45 link 1 to processor 46 link 0
connect processor 46 link 1 to processor 54 link 0
connect processor 47 link 0 to processor 55 link 1
connect processor 48 link 1 to processor 55 link 0
connect processor 49 link 0 to processor 50 link 1
connect processor 51 link 0 to processor 52 link 1
connect processor 53 link 0 to processor 54 link 1
connect processor 56 link 0 to processor 63 link 1
connect processor 57 link 1 to processor 58 link 0
connect processor 59 link 1 to processor 60 link 0
connect processor 61 link 1 to processor 62 link 0
}}}

24

A.3 64 Node Folded Binary Structure

{{{ wiring diagram
Connectivity Diagram

occam 2

connect processor 0 link 0 to processor 56 link 1
connect processor 0 link 1 to processor 48 link 0
connect processor 1 link 0 to processor 57 link 1
connect processor 1 link 1 to processor 49 link 0
connect processor 2 link 0 to processor 58 link 1
connect processor 2 link 1 to processor 50 link 0
connect processor 3 link 0 to processor 59 link 1
connect processor 3 link 1 to processor 51 link 0
connect processor 4 link 0 to processor 60 link 1
connect processor 4 link 1 to processor 52 link 0
connect processor 5 link 0 to processor 61 link 1
connect processor 5 link 1 to processor 53 link 0
connect processor 6 link 0 to processor 62 link 1
connect processor 6 link 1 to processor 54 link 0
connect processor 7 link 0 to processor 63 link 1
connect processor 7 link 1 to processor 55 link 0
connect processor 8 link 0 to processor 48 link 1
connect processor 8 link 1 to processor 56 link 0
connect processor 9 link 0 to processor 49 link 1
connect processor 9 link 1 to processor 57 link 0
connect processor 10 link 0 to processor 50 link 1
connect processor 10 link 1 to processor 58 link 0
connect processor 11 link 0 to processor 51 link 1
connect processor 11 link 1 to processor 59 link 0
connect processor 12 link 0 to processor 52 link 1
connect processor 12 link 1 to processor 60 link 0
connect processor 13 link 0 to processor 53 link 1
connect processor 13 link 1 to processor 61 link 0
connect processor 14 link 0 to processor 54 link 1
connect processor 14 link 1 to processor 62 link 0
connect processor 15 link 0 to processor 55 link 1
connect processor 15 link 1 to processor 63 link 0
connect processor 16 link 0 to processor 32 link 1
connect processor 16 link 1 to processor 34 link 0
connect processor 17 link 0 to processor 33 link 1
connect processor 17 link 1 to processor 35 link 0
connect processor 18 link 0 to processor 34 link 1
connect processor 18 link 1 to processor 32 link 0
connect processor 19 link 0 to processor 35 link 1
connect processor 19 link 1 to processor 33 link 0
connect processor 20 link 0 to processor 36 link 1

25

connect processor 20 link 1 to processor 38 link 0
connect processor 21 link 0 to processor 37 link 1
connect processor 21 link 1 to processor 39 link 0
connect processor 22 link 0 to processor 38 link 1
connect processor 22 link 1 to processor 36 link 0
connect processor 23 link 0 to processor 39 link 1
connect processor 23 link 1 to processor 37 link 0
connect processor 24 link 0 to processor 40 link 1
connect processor 24 link 1 to processor 42 link 0
connect processor 25 link 0 to processor 41 link 1
connect processor 25 link 1 to processor 43 link 0
connect processor 26 link 0 to processor 42 link 1
connect processor 26 link 1 to processor 40 link 0
connect processor 27 link 0 to processor 43 link 1
connect processor 27 link 1 to processor 41 link 0
connect processor 28 link 0 to processor 44 link 1
connect processor 28 link 1 to processor 46 link 0
connect processor 29 link 0 to processor 45 link 1
connect processor 29 link 1 to processor 47 link 0
connect processor 30 link 0 to processor 46 link 1
connect processor 30 link 1 to processor 44 link 0
connect processor 31 link 0 to processor 47 link 1
connect processor 31 link 1 to processor 45 link 0
}}}

A.4 64 Node Cube connected Cycle

{{{ wiring diagram
Connectivity Diagram

occam 2

connect processor 0 link 0 to processor 48 link 0
connect processor 1 link 0 to processor 49 link 0
connect processor 2 link 0 to processor 50 link 0
connect processor 3 link 0 to processor 51 link 0
connect processor 4 link 0 to processor 52 link 0
connect processor 5 link 0 to processor 53 link 0
connect processor 6 link 0 to processor 54 link 0
connect processor 7 link 0 to processor 55 link 0
connect processor 8 link 0 to processor 56 link 0
connect processor 9 link 0 to processor 57 link 0
connect processor 10 link 0 to processor 58 link 0
connect processor 11 link 0 to processor 59 link 0
connect processor 12 link 0 to processor 60 link 0
connect processor 13 link 0 to processor 61 link 0
connect processor 14 link 0 to processor 62 link 0

26

connect processor 15 link 0 to processor 63 link 0
connect processor 16 link 0 to processor 32 link 0
connect processor 16 link 1 to processor 18 link 1
connect processor 17 link 0 to processor 33 link 0
connect processor 17 link 1 to processor 19 link 1
connect processor 18 link 0 to processor 34 link 0
connect processor 19 link 0 to processor 35 link 0
connect processor 20 link 0 to processor 36 link 0
connect processor 20 link 1 to processor 22 link 1
connect processor 21 link 0 to processor 37 link 0
connect processor 21 link 1 to processor 23 link 1
connect processor 22 link 0 to processor 38 link 0
connect processor 23 link 0 to processor 39 link 0
connect processor 24 link 0 to processor 40 link 0
connect processor 24 link 1 to processor 26 link 1
connect processor 25 link 0 to processor 41 link 0
connect processor 25 link 1 to processor 27 link 1
connect processor 26 link 0 to processor 42 link 0
connect processor 27 link 0 to processor 43 link 0
connect processor 28 link 0 to processor 44 link 0
connect processor 28 link 1 to processor 30 link 1
connect processor 29 link 0 to processor 45 link 0
connect processor 29 link 1 to processor 31 link 1
connect processor 30 link 0 to processor 46 link 0
connect processor 31 link 0 to processor 47 link 0
connect processor 48 link 1 to processor 56 link 1
connect processor 49 link 1 to processor 57 link 1
connect processor 50 link 1 to processor 58 link 1
connect processor 51 link 1 to processor 59 link 1
connect processor 52 link 1 to processor 60 link 1
connect processor 53 link 1 to processor 61 link 1
connect processor 54 link 1 to processor 62 link 1
connect processor 55 link 1 to processor 63 link 1
}}}

A.5 16 Node 2-dimensional Array with Booting Processor

{{{ wiring diagram
Connectivity Diagram

occam 2

connect processor 0 link 0 to processor 1 link 1
connect processor 0 link 1 to processor 4 link 0
connect processor 1 link 0 to processor 13 link 1
connect processor 4 link 1 to processor 16 link 0
connect processor 2 link 0 to processor 3 link 1

27

connect processor 2 link 1 to processor 14 link 0
connect processor 3 link 0 to processor 15 link 1
connect processor 5 link 0 to processor 8 link 1
connect processor 5 link 1 to processor 9 link 0
connect processor 6 link 0 to processor 10 link 1
connect processor 6 link 1 to processor 7 link 0
connect processor 7 link 1 to processor 11 link 0
connect processor 8 link 0 to processor 12 link 1
connect processor 9 link 1 to processor 12 link 0
connect processor 10 link 0 to processor 11 link 1
connect processor 13 link 0 to processor 16 link 1
connect processor 14 link 1 to processor 15 link 0
}}}

28

	1 Introduction
	2 Ring Structure
	3 Two-dimensional Array
	4 Folded Binary Structure
	5 Cube Connected Cycle
	6 How to Introduce an Extra Node for Booting Purposes
	A Wiring Diagrams for Application Examples
	A.1 16 Node Ring Structure
	A.2 64 Node 2-dimensional Array
	A.3 64 Node Folded Binary Structure
	A.4 64 Node Cube connected Cycle
	A.5 16 Node 2-dimensional Array with Booting Processor

