DRAFT - Edit Me

SUN

User’s Guide

11 December 1981
Editor: W.I. Nowicki
Contributions by: J. C. Mogul and V.R. Pratt

Copyright © 1981 Stanford University

TABLE OF CONTENTS) . : I

Table of Contents

N

1. Introduction 1
1.1. Intended Audience 2
1.2. Related Documentation 2

2. Software Development on Unix 3
2.1. Organization of SUN dircctories 3
2.2, Unix Commands Relevant to 68000 Software 5

2.2.1. Compiling with CC68 5
2.2.2. The 68000 Assembler 7
2.2.3. The 68000 Linker 8
2.2.4. Producing Loadable Files 9

2.3. Header Files in /ust/sun/include 9
2.4. Libraries 11
24.1. The C Library 1
2.4.2. The PUP and Leaf Libraries 12
2.4.3. The SUNOS Library 13

. 2.5. The 68000 C and Pascal Calling Sequence 13
2.6. The "S-Record” Down-Line Load File Format 14

3. Using the SUN Processor 15

3.1. Introduction to the SUN ROM Monitor 15
3.1.1. What is the monitor? 16
3.1.2. Absolute Rules 16

3.2. Getting Started 17
3.2.1. Initializing the Workstation 17
3.2.2. Some Sample Programs 18
3.2.3. A Simple Example _ 18

3.3. The ROM Monitor Commands . 19

3.4. Loading Programs ' 21
3.4.1. Down-line Loading 21
3.4.2. Net-loading

3.5. Mcmory Mapping 23

3.6. Traps 25

3.7. Tracing programs 26
3.7.1. Breakpoint traps . 26
3.7.2. Trace traps 27

3.8. Emulator Traps 27
3.8.1. Information EMTs 28
38.2.1/0 EMTs 28
3.8.3. Memory Management EMTs 28

4. The SUN Graphics System 31
4.1. Graphics on the SUN workstation 31
4.2. Detailed Operation of the Graphics Board 32

11 DECEMBLCR 1981

It 7 ' ' ‘ SUN USERS’ GUIDE

5. The Motorola 68000 Design Module) | 37

5.1. Preparation of Programs v}
5.2. Compilation ; - 37
5.3. Down-line Loading . 37
5.4. Running 38
5.5. Debugging Aids 39
5.5.1. Display , 39
5.5.2. Setting 39
5.5.3. Breakpoints 40
5.5.4. Tracing 40
5.5.5. Trace Display .41
5.5.6. Symbols 42
5.5.7. Numeric conversions 42
'5.6. Symbol Tables 42
5.7. Disassembly 43
5.8.P2/1A , : 43
5.9. Memory Layout 4
6. An Insider’s Guide to SUNet - 48
6.1. Remote Terminal Programs 45
6.2. File Transfer Programs : 47
6.3. Walk Net (Tape transfer) 47
7. SUNOS - A Small Operating System , 4¢
7.1. Process-oriented Services : - |
 7.1.1. External Processes 51
7.1.2. Internal Processes . . 52
7.1.3. Patient services . 52
7.1.4. Physician services » 83
7.2. Stream-oriented Services S 53
7.3. Performance Services S5
74. Performance Characteristics of Present 68000 Implementation 56
7.5. Calloc - A CPU Allocator for the Motorola 68000 . _ 57
7.5.1. Overview ; - 57
7.5.2. Machine Dependencies in Calloc _ 39
7.5.3. Calloc Duties . 59
7.5.4. Calloc Nonduties _ 60
7.5.5. Requests to Sleep 61
7.5.6.CleaningUp 62
7.5.7. The Calloc Process Model 62
7.5.8. Control State Transitions - 64
_ 7.5.9. Calloc Scrvices , 4
7.6. The Edit-String Protocol 65
7.6.1. The Edit-String Data Structure 65
7.6.2. Reference 66
7.6.3. Locating Block Headers 66

7.6.4. Asynchronous Access ' 67

11 DECEMBER 1981

TABLE OF CONTENTS 7 f . | W

index : S '_ i . 69

11 DECEMBER 1981

v

11 PECEMBER 1981

SUN USERS’ GUIDE

LIST OF FIGURES

List of Figures

Figure 1-1:
Figure 2-1:
Figure 3-1:
Figure 3-2:
Figure 4-1:
Figure 4-2:
Figure 4-3:
Figure 4-4:
Figure 6-1:

Major SUN Workstation Components
Devcloping Software with Unix

Layout of the SUN Processor Board
Memory Mapping on the SUN Processor
The SUN Graphics Board

The SUN Graphics Screen

"RasterOp"” Concept

Graphics Board Address Decoding
Topology of SUNet

11 DECEMBER 1981

BRLBERE o

INTRODUCTION ' ' 1

1. Introduction'

SUN is the Stanford University Network. This is an on-going effort of se\}eral ‘groups within Stanford
Umvcrsny to provide a local computer network for Stanford University [2} based on inexpensive but high
pcrformancc workstations [3]. The network currently connects several time-sharing systems[7] in the
Computer Science and Electrical Engincering Departments, with plans to extend the network to the rest of
the campus [16]. The proccsso‘r architecture in the workstation is the Motorola MC68000. The workstation
uses the Iﬁtcl Multibus!, which is proposed IEEE standard 796, so many other common peripheral interfaces
are comeicially available. “Workstation” is used instcad of “personal computer” or “terminal™ to emphasize
the flexibility of the design.

4 | ™

Multibus

<
68000 Graphics Ethernet
Processor | System Interface

el r “ l
Keyboard Display Ethernet

N ‘ ‘ J

Figure 1-1: Major SUN Workstation Components

There ére currently several operating systems being developed for the SUN workstation.‘ Perseus[11} is a
distributed operating system based on messages and links [4] that has iJeen evolving for several years. It is
written in Pascal* [8], a version of Pascal for systems programming. In the mean time, there are several
attempts to bring up Unix in various stages. | Vaughan Pratt has written his own stream-based operating
system (scc Chapter 7). Another operating system is being developed to be used in a multl -processor

conﬁguratmn

1Mullibus is a trademark of Intcl Corporation

11 DECEMBER 1981

2 | | SUN USERS’ GUIDE

1. 1 Intended Audience : :
This manual is intended for pcoplc who want to write progxams for the SUN workstation. Pventuaﬂy thts,
‘should be called the “Hacker’s Manual,” with a separate manual sparmg casual users of the unnecessary
implementation details. The emphasis is on getting consistent up-to-date informaﬁon, ra‘thcr' than a pretty
manual. Suggestions, additions, editors, and proofrcaders are welcome. Many of the tools described here 'are
preliminary or interim in nature. Since everything changes so fast, you can incrementally generate any of the

chaptcrs of this manual.

The source for this document is stored ,in' [Shasta]/usr/sun/doc. Each chapter exists as a press file,

which can be printed with the ¢z command.
cd Zusr/sun/doc
tz <chapter>.press
There is a makefile in that directory, so acommand of the form

cd Zusr/sun/doc
make {chapter>.press
- cz <chapter>.press

will make a given chapter into a press file, which is then be printed on the Dover printer. The cz program

" automatically inserts the figures in their proper places. To get the entire manual, simply use the commands:

cd fusr/sun/doc
cz manual.press

1. 2 Related Documentatlon

1. The archxtecture of the MC68000 procesor and a description of the processor chip can be I‘ound in
Motorola’s User’s Manual [13]. There arc several books describing the 68000 architecture [9] [10].
Most vendor-supplied hardware is described in separate manuals or data sheets.

2. The hardware manual [1], currcntly somewherc on Sail, describes the processor, ethernet, and
graphics boards designed at Stanford. Someday we should convert this into Scribe and merge it
into this manual. .

3. The Documentation for Unix? can be found in the standard Unix [15] and Berkeley manuals.
Most of this is stored on the large Unix systems, and available through the man and apropos
commands. Some specific MC68000 Unix commands are described in the next Chapter.

4. The Perscus documentation, under [IFSJ<Perseus>. Perscus is a distributed operating system,
currently under development. There are probably a dozen CS246b projects that arc related, the
documentation of which is scattered throught the world.

2Unix is a trademark of Bell Laboratories

11 DECEMBER 1981

our 1 wAKrE DEVELOPMENT ON UNIX

2. Software Development on Unix

Currently our development work is being done on a VAX

3 computer running the Unix operating system.

With any luck, Unix may soon be running on the 68000 itself.-

2.1. Organization of SUN directories

Common SUN software is stored in subdircctories under one master directory. For example, on the

Stanford vaxes Shasta and Diablo, this directory is /usr/sun. The following is a description of these

subdircctories, using the notation relative to /usr/sun, or whatever it happens to be called on your system.

Every source file should contain a comment near the begining describing the author, date, and purpose of the

file,

./admih
/bin

~ /bootfile
/dm

/dm/lib
" /dm/include

/doc

./doc/graphics

Jinclude
b

./man68

Administrative records, and a wishlist.

Binafy‘ files for Sunix commands. Complain to Vaughan about documenting Sunix,

- Standafd boot-format files. The production copies of stand-alone programs reside here.

This is the default directory for the SUN boot server. “Test” versions are put in the
subdirectory test, not in the main directory.

- Files to support the Motorola Design Module. Includes .d1 format files of some

programs that run on the design module. Read chapter 5 for more information on the
support for the design module.

Object library files specific to the design module.

ﬁeade_r mes specific to the design module.

-Overview documentation. The document you are reading now resides here. Some other
documentation exists in subdirectories of this.

- Description of a Raster-op level graphics package.

Header files, used by the #include directive of the C preprocessor. See section 2.3 for
more information. , '

Objcctrlibrayries. These are searched by the -1 option of cc68. Some of these are
described near the end of this chapter.

Master copies of manual pages describing Unix commands. See next section for details ont
these commands. ' «

3VAX is a trademark of Digital Equipment Corporation

11 DECEMBER 1981

Jmonitor

Jstc

/src/cmd
./src/diag
./src/games

./src/graphics

JsrcAibe

. Jsre/libe/ert

J/src/libc/emt

J/src/libe/gen

Jsre/libe/stdio

SUN USERS’ GUIDE

.d1 files for making monitor proms. Sources are hidden under ./src/monitor.

Some sun-related sources, subdivided into the following subdirectorics. These should
correspond to the debugged, “production” versions of programs. Each subdirectory
should have a makefile describing how to compile sources in it; the result of the
makef i1e should be the bootfiles in ./bootfile or ./bin.

Commands that run on Vax and Sun. Further divided into subdircctories for some of the
important tools like the compiler, loader, etc.

Sun hardware diagnostics. These consist of a memory test, an ethernet interface test, and a
- graphics board test.

~ Source for somé_ games. Most of these run on a “dumb” terminal, instead of using the
-graphics board.

Graphics demostfation programs, and a Raster-op packagé.
Sun libc.a soﬁmes. Further subdivided into the following subdirectories.

.-C run-time support. This is the routine which sets up the stack and calls the main function
~ofa program.

Emulator traps into the PROM monitor.

General functions. This includes string manipulation, string conversion, etc.

JSiandard 10 ﬁin&t’xbns. Currently this all goes through the terminal line.

./src/lib:c/sunsiuffSUN Pfccessor specific part of the library. Isn’t all this stuff" Please complain to vaughan

about this, ‘ e

Jsre/libe/test 'Floating point tests. Has anybody ever used this?

/src/libc/unixstdio ,') , : _
Some Unix stdio stuff, never used for anything.

./src/monitor PROM Moni'torb'sourccs. Complain to Jeff that the up to date versions are kept in his
private directory instcad of the proper place.

J/src/mut Multi-user Pup Telnet. This is the program that runs on “Ether Tips”, and in a multi-
window terminal program located in ./src/tty.

Jsrc/ty Multi-window terminal program.

/unix68 Nu terminal Unix from MIT - Optional. We should put the LucasFilms Unix there

- someday, if we ever get it.

11 DECEMBER 1981

SOFTWARE DEVELOPMENT ON UNIX v ' ' s

2.2. Unix Commands Relevant to 68000 Software

The following Unix commands are used for MC68000 software development. All of them are docuxﬁcntcd

in chapter 1 of the Unix manual. This listing may be obtained using the Unix command apropos 68.

as68(1)
cc68(1)
ccom68(1)
ddt68(1)

~dix(1)

di6s(1)
1d68(1)
lorder68(1)
nm68(1)
068(1)
pc68(1)
pré68(1)
rev68(1l)
r168(1)
size68(1)

- Assembler

- General C command

- Portable C compiler

- A symbolic debugger and disassembler
- Down line load protocol handler

- Download file generator

- Linking loader .

- Object library utility

- Print name list of objcct files

- optimizer for asscmbly language

- Pascal* compiler (similar to cc68)

- print extended statistics on .b file

- reverse byte order .b and .68 (b.out) files
- print relocation commands in a .b file

- prints sizes of segments in a .b file

2.2.1. Compiling with CC68

These commands are meant to mirror the standard Unix commands without the "68" suffix. For example,

thé normal C command is cc, and the coresponding MC68000 command is cc68. This is the command most

users will be concerned with. Its function is to take the files named as arguments and do whatever needs to be

done to make them into a runable program. For cc68 to work properly, you should follow éome’ simple

naming conventions. File names should consist of a short module name, followed by a suffix consisting of a

~ dot and one or two letters. The suffixes are listed below:

.C

(none)

{

C language source programs. These are typed in and edited by the user with any editor.

Pascal* (or regular Pascal) source files. See the Pascal* reference manual [8] for a

“description of the language.

Header files, usually consisting of declarations and macro definitions which are accessed by
the #include directive. Some useful header files are described in section 2.3,

Asscmbly language files, produced by the compiler or written by hand. Compiler produced
. s files are usually not seen by the uscr, except for detailed optimization or debugging.
These used to be called . a68 files, but cc68 used . s, which unfortunately conflicts with
all other assembler files, such as VAX assembler files.

* Binary files, the output of the assembler.

The default output of the linker is the file name b.out Usually an explicit output file will be
specified with the -0 option, the name of the program without any suffix. If the file is

11 DECEMBER 1981

6 | SUN USERS' GUIDE

generated on a machine with non-smndard byte order such as a VAX, the , r format should
be the final result.

.r Byte reversed files produced by rev68, ready to be loaded over ethernet. In actual
practice, the . r suffix tends to not actually appear.

.d1 Motorola down-linc load format (called "S-records"). Used to load over slbwvserial lines.

The three most often used options of cc68 are -0 <name), which means the the output will be named

<name>, -¢ which specifies a separately compiled module, and -0 which causes the optimizer to be invoked.

Terminal
Loading

AHdie file.dl

o ccB8 -¢ file.c

ccB8 -cfile.s

ccé8 -d Other .b files
and libraries

. Network
Loading
On file

cc68 -1 file.s

—

~

Figure 2-1: Developing Software with Unix

The make program simpifics the construction of programs using scveral modules [6]. Just create a file
called makefile (or Makefile) under the directory with your programs to be compiled. The makefile
consists of dependencics and commands. dependencies convsist of a list of files to'bc made, followed by a
colon, followed by a list of files upon which the others depend. Commands begin with a tab and end with a

blank line. Thus, for example,

11 DECEMBER 1981

' SOFFTWARE DEVELOPMENT ON UNIX 7

ethertip: enet.b tip.b
' cc68 -r -o ethertip enet.b tip.b

tip.b: tip.c
cc68 -0 -c tip.c

enet.b: enet.h enet.c
cc68 -0 -c enst.c

is a makefile for a program called ethertip that cohsists of two modules, tip and enet. The first command
line links the iwb modules together. The tip.b file depends on the corresponding source tip. ¢, and will
be compiled with the optimizer because of the -0. The enet . b module is compiled from the corresponding
. ¢ file, but also includes 2 header (. h) file. .

)}yfter creating the ma‘keﬁle,’”you can edit any or all of your sources, and just say make to remake the
" program. The make program reads the makefile, and infers the necessary commands from the write dates of
the files. Continuing the aboy}e example, if we were to edit the enet. h file and perform a make command,

the enet . b module would be recompiled and the program relinked with the following commands:

. . ¢c68 -0 -c enet.c
’ cc68 -r -o tip enet.b tip.b

2.2.2. The 68000 Assembler |

- The 68000 assembler (as 68) takes file. s and produces file. b, a non-text file contammg an 8-word header
‘and segments for text data, symbols data relocation commands, and text relocation commands. The header
contams two words of magic numbers, the sizes of the text, initialized data, uninitialized data, symbol, and
'relocatxon command segments and the entry point (the start address of the top level routine). The listing
’ mlght by shghtly helpful in debuggmg, the values it gives for symbols however are mcomplete Uninitialized

" data symbols have no values in the listing, while all other values are relative to the start address, determined at

' load time.
AssemblerA opnons o ,

~-d<digit> Used for d;buggmg the assembler only. The digit gnves some indication of the level of
debug pnn{t_\ovut.

-e | AOrnB‘f p;xt external symbols into the output binary file.

—g . Treat anry ﬁndeﬁned symbois as globals. They must be éventually resolved by the Ioader.v

L name Putv the Iisﬁng file into the file name. The cc68 command normally puts the listing in a

file with a name of the form name. 1s.

-1 Produce a listing in filename. 11s t or other file if ~L is given.

11 DECEMBER 1981

SUN USERS' GUIDE

Put the output in the file name instead of filename. b.
Print the listing on standard output.

Put the symbol table in the file 1ist.out. The loader’s symbol table is probably more
useful, since it is made after relocalion.

2.2.3. The 68000 Linker
The 68000 linkcr (1d68) produces a file called b . out ina sxmllar format to f le.b. The primary tasks of

the linker are to develop a symbol table for all of i its inputs, and exccute the relocation commands to produce

abso]uic code. Thc dutput contains the same eight-word header as in file. b, text, data, and the symbol table.

Loader optxons

-D dsz
-d -

- -e ept

~1name

~-T addr

~“u sym

~Vversion

| ‘Set the size of the data segment to dsz. Itis padded with zeros if too short.
' Porce the common segment to be defined (overrides second part of - r)

B Make ept t.he entry point of the program. Otherwise the first address of the code scgment
is used.

Seaféh the library file named /usr/sun/1ib/Tibname.a. A Iibrary file is searchcd
only as its name is encountered on the command line, so the order may be iniportant. Note
there is no space between the -1 and the name.

o Create a ﬁIe list§ng the symbols and their values in sym, out.

Oufparis-named fileinstead of b.out.

Preserve relocation bits so that the output file can be used for input to 1d68 in a later run.
Also prevents final symbol definitions for common symbols, and supresses “undefined
symbol” diagnostics.

Sﬁ:ip the output file of all symbol table and relocation bits.
Start the code segment at addr.

Add synt to the symbol table. This is used when loading enitrely from a library, since you
necd at least one symbol reference to extract a “root” module.

Specifics the version of the 68000 environment to assime. Currently the only available
options are -vm for the Desngn Module, and the default for the SUN.

stcard locals starting with L (wcaker than -x). This option is used by c¢68 to dlscard
internally-generated symbols.

~ 11 DECEMBER 1981

SOFTWARE DEVELOPMENT ON UNIX . 9

Discard all local symbols from the output file.

2.2. 4 Producing Loadable Files
The binary produced by the linker is converted into a file suitable for down hne loading by most PROM

monitors with the d168 program. The only d168 option is -T st which specifies st as the starting address

The input file must be the first argument; options other than -T are ignored in silence. Symbol tables are

preserved. See section 5.3 or 3.3 for information on actually loading the design module or SUN processor.

The rev6s program takes linked b . out files and does some final byte-reversing if the target machinc has a

different byte order than the current machine.

2.3. Heade_r, Fileé m /us r/sun/include

Several useful header files are located in the /usr/sun/include directory. This directory is searched

automatically by the C f)reprocessor when you use #include directives,

amd9513.h

b.outh

buserr.h '

‘charsh
framebuf.h

graphics.h
graphmacs.h

lisp.h

m68000.h
m6321.h

m6840.h

Definitions for the AMD9513 timer chip. Jeff and several others have their own private
versions of this file. Please complain to them about it, and the relationship with timer.h.

Defines the format of a b. out binary file. Note that although you use the same header
file, the bytes are reversed between the 68000 and the VAX, So you must run rev68 to
convert between the two. ’

A éti'ucture,deﬁnition matching the information pushed on the stack of the 63000 on a bus

- error, and the “function codes” as described in the MC68000 User's. Manual [13].

Defines s_bmé mnemonics for control characters.
Definitions for the SUN Multibus frame buffer. See Chapter 4 for more information.

Deﬁnitip)ns_ for a “Raster-Op” graphics package which is frame-buffer independent. Sce
Chapter 4, and the separate manual on this for more information.

‘Some graphics macros for the SUN frame buffer. Most people will probably want to use

the graphics package instead.
A simp‘lev Lisp system defined in macros that map into C. Complain to Vaughan about this.

MC68000 mnemonic definitions for registers, and some Macros for performing special
instructions like setting the interrupt level from C.

Motorola 6821 Peripheral Interface Accessory. This is a fancy name for the para]lcl 170
ports on the Design Module.

‘Motorola 6840 Timer. This is the timer on the Decsign Module. It is so complicated

11 DECEMBER 1981

10

m6850.h

mbRenet.h

map.h

_nec720L.h

necuart.h

noprotect.h

pcmap.h
reentrant;h

$265Lh

statreg.h A

stdioh

sunemt.h

sunmmap.h
sys.h

timer.h

vectors.h

SUN USERS' GUIDE

nobody here has cver figured out how to use it.

Motorola 6850 Asynchronous Communication Interface Accessory. This is the device that
connects your terminal to the Design Module, and the Design Module to a computer.
Alinost everybody clse calls it a UART.

Definitions for the SUN Multibus Ethernet interface.

Vaughan’s version of the definitions for the memory map on the 68000 processor board.
Please complain to him about the duplication with pcmap . h and naprotect.h.

Definitions for the NEC 7201 double UART. This is what connects your terminal on the

SUN board, analgous to the Motorola 6850.

~ More swff for the NEC 7201 UART, like the addresses and some utlhty macros. lt is so
complicated it takes two files! '

Yet another memory map file. This one defines the protection codes. Complain to
Vaughan about the strange name,

Jeff's version of the memory map definitions. Please complain to him about the duplication

between this and map. h and noprotect.h.

Defines a macro for interrupt handlers. Please complain to Vaughan about the strange
name,

D.eﬁ_ni‘tiod‘svfor the Signetics 2651 UART. This is the chip used on our octal UART boards.

Deﬁnes éomé éymbols for the 68000 status register.

Some undocumentcd definitions for some kind of Unix-like standard 1/0. Complam to

Vaughan to document it.

:De_ﬁnes the émt codes supported by the SUN Prom monitor.

Some macros for manipulating the old wire-wrap version of the memory map. Complain to
Jeff to get rid of this.

Some macros to do storage allocation of fixed size objccts, Complain to Vaughan about
the strange name.

Some more definitions for the SUN processor board timér. Sec also amd9513.h.

Some symbols defined for the MC68000 interrupt and exception vectors.

11 DECEMBER 1981

SOFTWARE DEVELOPMENT ON UNIX) 11

2.4, Libraries
Some 68000 libraries are stored in the directory / usr/ sun/ 1ib in the form of archives compilcd and
| assembled as .b files. The standard ar program, as described in the Unix manual, is used to manipulatc these
archive files. The cc68 command normally scarches the library /usr/sun/1ib/1ibc.a automatically.
Some of these functions are similar to the standard C library, but others are still under development. The

sources should all be under /usr/sun/src/1ib or fusr/sun/src/1ibec.

2.4.1. The C Library 7

In the interests of greater portability of low-level code between the design module and the SUN processor,

some board independent I/0 functions have been written and installed in 1ibc.a. Any references to
putchar, printf, and getchar, for example, will invoke functions to perform the 170 on the
“console” terminal. Similarly getenv will behave rather like its Unix counterpart, with getenv("TERM")
returning "sun®, etc, |

There is also a set of lower-level functions in the standard C library. The device types are determined at
link time, b); supplying the appropriate set of routines, either as parameters to cc68 (for example, -vm).. All
vart functions begin with ‘line’ and have the line number as their first argument. By convention, line number
0 is the local terminal or keyboard, and line number 1 is connceted to a remote host. This trades off size of
the library for size of the calling code and a little speed.
char Hneget(‘lz‘ne) ; 7 -

~Get acharacter from line line, assuming the receiver is ready.

Ttneput(line, chr) , ,

' - Put character chr on line line, assuming the transitter is ready.
int Tineh'éédytx(’line) » '

True if the transmitter is ready on line /ine to accept another character to be transmitted.
int 1 i’nereadyrx(lline) -
True if the receiver is ready on line lire.

Tineservice(proc())

Set the given procedure pointer to be the interrupt service routine for both lines. proc
should be declared with the reentrant() macro, described in section 2.3.

Tinearmrx(line) , :
Enable receiver interrupts on the given line. The interrupt service routine should already

be set up.

Hnedisarmrx(lz‘né)

11 DECEMBER 1981

12 ' SUN USERS' GUIDE

Disarm receiver interrupt on the given line.

‘Tlinearmtx(line) }
Arm transmitter interrupt for line line.

Tinedisarmtx(line)
disarm transmitter interrupt for line line.

lineresettxint(line)
Reset a transmitter interrupt, when there are no more characters to print.

1ineresét(line) ;
Reset line. Default to interrupts disarmed.

It is the responmbmty of the individual libraries to deal with the problem of mdepcndently setting and
clemng control bxts for arm and dlsarm The user need not keep track of the bits explicitly.

~

The meaning of 11 ne‘r'ead j='=0 is that the line is busy for whatever reason, whether no carrier, no
DTR, no CTS, or reception/transmission proceeding. It is assumed that all operations will be with 8 data bits,
2 stop bits, and no parity bit. 1

No provi‘éi('m is made for detecting UART errors. It may be reasonable to attempt low-level error
corrccuon/detecnon in lmegct and possibly lineput; however this should not be considered a substitutc for

higher level error correctxon/detectxon (checksums on downloading, perhaps use of Dialnet).

2.4.2. The PUP and Leaf Libraries _ , .
The PUP[5] library is stored in /usr/sun/1ib/14b pup.a. Since these routines arc all described in
section 9 of the Unix manual (available online with the man 9 command), they are not descrlbed in detail

here. cc68 will search tlns berary ifitis given the -1pup option.

The -11eaf option ona cc68 will search the leaflibrary, stored in /usr/sun/1ib/1ibleaf.a. Leaf
is a remote file access protocol, based on the Sequin reliable packet stream protocol. There are Leaf servers
running on most large timesharing machines. Documentation of the library is in

/usr/local/doc/leaf/LeafUser.press@Shasta.

11 DI:CEMBER 1981

SOFTWARE DEVELOPMENT ON UNIX ' o

2.4.3. The SUNOS Library
The SUNOS library is stored in /u.sr/sunll ib/1ibsunos.a, and can be scarched with the -Tsunos
option of cc68. The SUNOS library is discussed in chapter 7.

2.5. The 68000 C and Pascal Calling Sequence »

The stack grows downward, towards smaller addresses. Two address registers arc used to access the vstack,
a6 (the frame pointer) and a7 (the stack pointer). The stack pointer is the standard one for the 63000, in that
BSR (Branch to SubRoutine), ISR (Jump to SubRoutine), and PEA (Push Effective Address) all use it. Note
that exceptions“dyo not default to it, but rather to the System Stack Pointer, a register not accessiblc in user
- state.

The code produced by the C and Pascal compilers result in a6 serving as a pointer to a linked list of stack
frames. A stack frame is a region of the stack associated with the calling or activation of a function. Stack '
frames are stored contigaously on the stack. Stack frames have five components; from low addresses (top of

stack) to high they are: | '

1. Locals. These may be of any size, and will occur in the reverse of their declaration order (or,
perhaps more mnemonically, in their declaration order going away from the Frame Center). They
will be contiguous to within the word alignment restriction, i.e. non-chars will be aligned at even
addresses. If the first local is char its address is the same as though it were a short (a quirk of the
compiler). The compiler also allows one additional byte beyond the last local.

2. Registers. This region contains some subset of the registers d2-d7 and a2-a$ saved on entry. The
registers saved are those actually used. The convention is made that C subroutines always
- preserve these registers, as well as a6 and a7, but change d0,d1,a0 and al unpredictably. The
~ optimization is such that this convention holds down to the statement level (or even lower!).
Alignment is on multiples of 4. Because of the additional byte allowed by the compiler for locals,
that byte and up to 3 more (the worst case being when the locals actually declared end on a
~ multiple of 4) are all unused.

3. Frame Center. This contains a 4-byte pointer to the Frame Center of the next stack frame down
the stack (i.e. at a higher address).

4. Return Address. This contains the caller’s 4-byte return address.
5. Arguments. The arguments passced by the caller are implicitly cast as ints before Being pushcd on
the stack. Hence they are stored in consccutive 4-bytes regardless of their actual size. They are

stored in calling order, with the first argument closest to the Frame Center. It follows that the
order in which they are pushed is the reverse of the order they are written.

11 DECEMBER 1981

wo | - SUN USERS’ GUIDE

2.6. The "S-Record” Down-Line Load File Format

A . d1 file consists of a series of records each having seven components:
1 The Ictter S. |
‘2. Atype, a digit rn thc range 0 to 9.
3. Awwo digit (one bytc) count, giving the number of bytes in the record.
4. An addrcss, eirher 16-bit (rwcr.hex digits) or 24-bit (three hex digits).
S. n-3 or n-4 bytes of data, dcpendmg on the addrcss type, where n is the count given in 3

6. A one—byte checksum The checksum test is that the sum of the bytes in items 3 through 6 must
becongruent to 255 mod 256 i.e. must have 0xFF in the least significant byte

7 The end of the Ime

Thé types are as follows: _ A
Code Use Featur
0 Header Ignored by MACSbug, and no longer generated
1 Data Two-byte address, bytes in hex (not used)
2 " Data ‘Three-byte address, bytes in hex
8 ~ Trailer Three-byte address, bytes in hex
9

Traile’rA N Two-byte address, bytes in hex (not used)

If avhearder is givéri 1t rgoes at thé start. A trailer must appear, and goes at the end. The rest of the file
consists of data rccords The hcader is currently ignored. Each data record is loaded into memory starting
with the address spec'ﬁed in in the record provided it passes the checksum test. The trailer serves two
functions: to terminate readmg, and to load PC with the trailer’s address, gwmg a mechamsm for defining the

entry point of a program

11 DI:CEMBER 1981

USING 'IFHE SUN PROCESSOR

3. Using the SUN Processor

The SUN processor is a powerful single board computer containing a Motorola MC63000 CPU, memory

with management and parity, and some 1/0 devices. The board plan is illustrated in figure 3-1.

15

f

IEEE 796-Bus Interface

32K bytes EPROM Dual Uart 16-bit Input Port
68000 Processor Timer Memory Control
8 MHz
Memory 256K bytes
Clocks, Logic, etc. .
Management dynamic RAM

with Byte parity

=

W

vFigure 3-1: Layout of the SUN Processor Board

3.1. Introduction to the SUN ROM Monitor

Most use of the SUN processor involves interacting, at least initially, with the ROM-resident monitor. The

following sections discusses the purpose of the monitor, and how to use it. Note: the discussion below

~assumes (occasionally) the use of the PC-board version of the Sun Processor, which has a two-level memory

map. Users of the Versions 1 and 2 wire-wrap boards can probably deduce the points of difference; however,

neither of these boards will be supported in the future.

Although the primary function of the ROM monitor is to provide a simple consolc for the workstation,

there are a few features which affect the user programs that run under it. For simple programs, especially

those using standard 170 routines, the characteristics of the monitor should not be important. However, if a

program makes dircct use of interrupts or 170 devices, a few critical details are relevant.

11 DECEMBER 1981

16 | ~ SUN USERS' GUIDE

3.1.1. What is the monitor? , , V
It is uscful at this point to give a brief description of the operation of the monitor (SunMon), mostly to

provide a context for understanding the few rules imposed upon user programs.

The monitor has four major functions: initialization on processor resct, memory refresh, providing
Emulator Trap scrvice (see section 3.8), and “intelligent console” facilitics. Although the last may be the most

visible, the first two are the most important; the processor would be essentially unusable without them.

When the pfdceésdr is reset (either when the “Reset” switch is hit, or when the power first comes on),
SunMon gains control. It initializes the on-board 170 devices (timers and UARTSs), sizes memory, sets up the
Segment Table and Page Table, initializes the parity state of the on-board RAM, creates the RAM refresh
routine, and initializes the interrupt and exception vectors. After this, control is transferred to a module that

manages the *“console” functions,

Mémory refresh is done by the processor because it actually does not cost anything in terms of
performance, and because it greatly simplifies the hardware design. The memory is refreshed by simply
reading 128 consecutive words every 2 milliseconds (some memory‘ chips may nced slightly different refresh
rates). This is done by executing a roﬁtine consisting mostly of NOPs. This routine is stored in RAM, and so

a malfunctioning program may damage it and thus cause havoc (since the contents of memory will be lost).

The console functions are implemented with fairly straightforward routines that communicate with the user
via the two on-board UARTs. If a Frame Buffer is available, the monitor will use it for output instead of the

console UART (command are still entered via a keyboard connected to the UART.)

In versions of SunMon that support ethernet bootstrapping, the console ‘also uses the
Multibus Ethernet interface. In any case, all I/0 is done using “busy-waits”, and the code runs at the highest
interrupt priority. Therefore, if a user program is interrupted with the “Break” key on the console terminal or
with some 6ther exception, the monitor will run correctly unless its global data area has been damaged. | Also,
if the user program is then continued, it should be unaffected by the interruption save for the possible loss of
some /0. ' |

3.1.2. Absolute Rules v
From the preceeding section, it should be fairly obvious that one major rule is necessary to prevent a

monitor crash: do not trash the refresh routine or monitor globals. In general, the first two pages of memory

are reserved for the monitor and should never be written by user programs; however, user code may want to

change exception vectors occasionally. It is Iegal to change any exception vector, except the “Level 7

11 DECEMBER 1981

USING THESUN PROCESSOR 7 7 17

.Autovector”, at 0x7C (used for refresh timing), and any “Uscr Interrupt Vector™, between 0x100 and 0x3FF,
inclusive. The refresh routine and monitor globals live in the region reserved for “User Interrupt Vectors”,

because the Sun processor board does not support their use.

Certain other exception vectors (for example, the vector for a Breakpoint trap) are used by the monitor.
However, it may be possible to alter these without dire results. Any program altering the refresh routine and

interrupt vector must take responsibility for doing proper memory refresh.,

One other rule is important: user programs should not modify the Context Register dircctly, but should use

the facilities described in section 3.8.
3.2. Getting Started

3.2.1. Initializing the Workstation

- The first step in using the SUN processor is making sure it is turned on. There is probably a switch labeled
“ON” and “OFF™. It will work better if the power switch is in the “ON” position. (Version 2 processors have
a “power” light on their control panels.) A _terminal should be connected to the communications cable
extending from the brocessor. If you have é serial line to a host computer available, it should also be
connected to the coﬁrhunications cable. Finally, if an ethernet interface is present, it should be connected to

an ethernet transceiver cable.

There is one switch, labeled “Reset” (it may actually be a power on/off switch.) Pressing and releasing the
Reset switch should be done after initial power-up of the machine, and whenever you want to really reset
éverything. After a few seconds, the monitor should identify itself on the console terminal, with a message

looking like _
Sun Network Monitor, Version 0.9 - 0x20000 bytes of memory

The word "Network” may be omitted; certain commands pertaining to the ethernet only work with network
monitors. If this message does not appear, and the “halt” light is not lit, check the terminal’s status and
connection. If the halt light is lit, and if repeated use of the Reset switch has no effect, your hardware may be

broken. The Reset operation will probably destroy the contents of memory.

Pressing and releasing the “Break™ key on the console terminal switch causes a trap (also known as an
“Abort”) to the monitor so that debugging commands may be given. You may continue an aborted program;

see the C command, described in section 3.3.

11 DECEMBER 1981

18

SUN USERS’ GUIDE

3.2.2. Some Sample Programs

The following are some uscful programs available in the default bootfile directory. Most of their sources

are in appropriate subdircctories of /usr/sun. They all can be loaded and started with the n name

command of the monitor. [Note: the locations of source files here arc all wrong!]

cyl4d
edp

kal

memtest

monhelp

rect

sunbfd

suntty

tip

tty

A short program that displays four circles that move diagonally on the screen. A good
example of simple animation. Runs only with a frame buffer, of course.

A simple ethernet diagnostic program. Source is in Zusr/sun/diag/edp. You might
have to load the . d1 version, especially if your cthernet interface is not working.

A kalidescope program, originally written in BCPL for the Alto, and transcribed into
C. Really impressive graphics demo for the frame buffer. Source is in Zusr/sun/demo.

Also see ikal, an interactive version.

A memory diagnostic, sources in /usr/sun/di ag/memtest. When your workstation

has nothing better to do, it could run this to help check for faulty memory. -

As described below, this is a file which prints out a quick summary of the available monitor
commands. Note: various versions of monhe 1p exist, corresponding to the various versions
of the monitor. On version 0.7 and later monitors, monhe1p2 is the program lo run. Please
bug Jeff to clean this up!

Another graphics demo for the frame buffer, The sources are located in Zusr/sun/demo.
This just does some “random” raster-ops in rectangles on the screen. frect is an
impressively fast version of rect.

A prbgram which lists the "standard" bootfilcs available via the ethernet bootloader,

A program which simulates a multi-window terminal on the frame buffer, with a separate
PUP telnet connection in each window. The source to this and the tty program is in
/usr/sun/tty. . :

A multi-user PUP telnet program. If you have any octal UART boards in your machine
they may each have a PUP telnet connection, as well as the primary terminal.

Another version of the multi-window terminal program. This one uses the serial line
instead of the-cthernct interface, so you talk dircctly to one host.

3.2.3. A Simple Example

We will now step through how to write, compile, load, and run a simple program. First, we use our favorit

editor to enter the following program into the file /mnt/smi th/test. C.

11 DECEMBER 1981

USING THE SUN PROCESSOR ' 19

main()
/#
*/

printf(

* A simple tst program for the SUN workstation

"Hello world!\n");

We now compile the program with the following command:
cc68 -r -o test test.c

We then go to our workstaion and type the command to load and run:

>n /mnt/smfth/test
Hello world!

>

3.3. The ROM Monitor Commands

The command format understood by the monitor is quite simple. Itis:
- <{verb><{space>*[<argument><return>]

The Cverb) part is always one alphabetic character; case does not matter. C(space>* means that any number of

spaces is skipped here. Cargument> is normally a hexadecimal number or a single letter; again, case does not

matter. As indicated by /], the argument portion may be optional. When typing commands, <backspace> and

(delete) (also called <rubout>) erase one character, control-U crases the entire line.

The commands are:
An “Open” A-register n (0< n< 6). See the discussion below of “open”.
B Set a breakpoint. You will be prompted with the old breakpoint address; give the new
“address at which you want a breakpoint trap instruction inserted.
C addr ~ Continue a program. The address addr, if given, is the address at which execution will
begin.
Da “Open” D-register n (0 < n< 7).
E addr

F Bootfile name

G addr

“Open” the word at memory address addr; odd addresscs are rounded down.

Load, but do not start, a file via the Ethernct. The program can be started with the G
command. Normally, the current PC is set to the entry point of the loaded program. Of
course, this command is only available on network monitors.

Start the program by executing a subroutine call to the address addrif given, or else to the

current PC.

a minimal amount of help will be given; just a short list of commands. On network

11 DECEMBER 1981

=

w

mode

~ SUNUSERS' GUIDE

monitors, this actually involves boot-loading a help program via the ethernet. If the
ethernet interface is not working, no help is available.

set UART operation mode: ‘A’ means your terminal talks to the monitor, ‘B’ means your
host computer talks to the monitor (not very uscful if directly invoked), and “T" means that
you talk to the computer (“Transparent” mode) until you hit the transparent mode escape
character (initially sct to control/shift/six or control/up-arrow) followed by a *“c”. ‘S’
toggles the use of the Frame Buffer as the console output device; i.e., it selects it if it is not
being used. and selects console UART otherwise. The ‘S’ option has no effect if there is no
Frame Buffer present.

“Soft Reset™: resets the monitor stack and the default escape character. Useful after
exceptions or other anomalous situations. This may confuse the monitor if a breakpoint
trap is set.

Host-command This sends Host-command to the host computer, does an implicit I B, and sends a \ to the

Bootfile-name

addr

S-record

char

computer to indicate that it is ready to be downloaded. The Host-command is normally
d1x file.dl, which will put the terminal back into normal mode when the file is
downloaded.

On the SUN-1 processor, “open” Map register m. On the SUN-2 processor, “open” |
Segment Map register m. ’

Load and start a file via the Ethernet. Bootfile-name is the pathname of the file to be
bootstrapped. It should be in .r format, produced with thc -r option of cc68 or the
rev68 program. This command is only available on network monitors.

“Opcns" the byte location specified. The byte vs. word distinction is a problem on the
Multibus, since the convention on byte ordering within words is different for Multibus
addresses. :
On the SUN-2 processor, “open” Page Map register p. On the SUN-1 processor, this is
used to set the PID (Process Identification) register to p.

" “Opens” the miscellaneous registers (in order) SS (Supervisor Stack Pointer), US (User

Stack Pointer), SR (Status Register), and PC (Program counter). SS may not be alteredf

This causes the monitor to accept the S-record. Normally done by the host computer in L
mode, this responds with a two-digit record count and onc of L for Iength error, K for
checksum crror, or Y for success.

set the transparent mode escape character to char. Because of the way that the parser treats
spaces, the escape character cannot be sct to be a space.

“Opening” a memory word, map register, or processor register means that the address or register name is

displayed along with it current contents. You may then type a new hexadcecimai value, or simply <return>

to go on the next address or register. Typing Q will get you back to command level. For registers, “next”

11 DECEMBER 1981

USING THE SUN PROCLESSOR » . 2

means within the sequence D0-D7, A0-A6, SS, US, SR, PC. For cxample, the following commands set
location 1234 to 5678, and register D1 to OFOO The user types the underlined parts, with a return a the end of

each command.

>e 1234
001234: 23CF? 5678
001236: 00007 g

>d

DO: 000000017

D1: 000002317 0f00
D2: 012034057 g

>

| 3 4. Loadmg Programs

" One of the pnmary uses of the monitor is to load programs into the processor’s memory. Programs can
cither be loaded via a serial line connected to a host computer, refered to as “down-line loading”, or via the
ethernet, refered to as “nét-tbé;ding”. In usual terminology, “down-line loading” often refers to any method
loading one computer from another, but it is useful to make the distinction here. Net-loading is usually much

faster, but both modes have their advantages and disadvantages.

3.4.1. Down-line Loading
Down-line loadmg mvolves transferring a program file over a serial line, The ﬁle must be converted into a
format known as “S-records™ before transmission, either using the d168 command or the ~d flag of cc68.

Files in this format usually have a . d1 extension.

Suppose the ﬁle we want to load is called test.d1. Assummg that you have used “transparent” mode to
log into the host computcr and have set your working directory properly, you should then escape” from

transparent mode. Then, issue the command
L dix test.dl

This will transmit the command d1x test.d1 to the host, and then causc the monitor to accept future
commands from the host. If all gocs well, you should see a string of periods on your terminal, and then a
monitor prompt when the load is done. You may then start your program with the G command; normally,

the current PC is set by the ,downloader to be the cntry point of the program.

If the new monitor prompt comes immediately, this means that the d1x program detected an error, and
your program could not be loaded (probably because it could not be read). If the periods stop coming (one
should print every few seconds), this means that the loader has hung. You should hit Reset or the “Break”
key, change to transparcnt mode, and type control-C (or your normal interrupt character) to abort the d1x
command. You may also have to issuc the Unix reset command to put your terminal linc back into a

normal mode.

11 DI:CEMBER 1981

2 | " SUNUSERS GUIDE

Attempting to down-line load a file not in S-record format will probably causc strange behaviour, although

the d1x program attempts to detect this error. Also, you may omit the . d1 extension in most cases, ie.,
L dix test

should be equivalent to
L dix test.d)

unless both test . d1 and’tes t are S-record files.

3.4.2. Net-loading .

If you have a network monitor, and an cthernet interface, you may Ioad programs over the ethernet.
" Program files to be loaded in this way should be in “reversed b . out format”; this means that a file produced
by the loader should be converted using the rev68 command, or the -r flag of cc68 should be used in
compilation, Files in this format often have a .r extension, but sometimes they have either a .Boot

extension, or no extension at all,

Sufipose you want to load the file /mn t/person/test.r. You should give the command
F /mnt/pgrson/test.r"

You should almost iminediately get a new monitor prompt. You may then start your program with the G
command; normally, the current PC is set by the net-loader to be the entry point of the program.

Alternatively, you may give the “load-and-go” command
N /mat/person/test.r

which will load the file and immediately start it.

If the net—loader faxls to load the ﬁle it will print a period and try again, up to a reasonable limit. If it gives
up, it will prmt Timeout and return to the monitor. Even if a ﬁle is not successfully loaded, it is quite
probable that the memory has been altered.

If you get an exceptibn”{&heh net-loading a file, it may be because there is a hardware problem, but it is
more likely to be because you loaded something not in reversed b.out format. “Of course, if the exception

occurs with the load-and-go (N) command, it may have been caused by your brogram.

The network bootstrap server running under Unix interprets filenames not beginning with /° as relative to

/usr/sun/bootfile. Thus,
N memtest

will load the file /usr/sun/bootfile/memtest. In fact, the H (help) command in the network monitor

is equivalent to doing an N monhelp.

Normally, bootload requests are broadcast to all servers on the net. However, you can specify the name of

11 DECEMBER 1981

USING THE SUN PROCESSOR ‘ 3

the host you want to boot the file from by preceeding the filename with the hostname and a colon. For

example,
N shasta:memtest

will get the program "memtest” from the PUP host named “shasta”.

Note that it is rot possible to load more than one file at a time with the net-loader. If you want to load

more than one file (presumably into different arcas of memory), you must use the down-line loader.

3.5. Memor_y‘Mappihg

The SUN brocessor is provided with a map so that you can map pages of 2K bytes anywhere in your
address spadg. The structure of the virtual address is given in figure 3-2. SunMon, during initialization, sets
uj) the Segmenf Table and Page Table in a “standard” way which makes all memory and I/0 devices
available to user programs. User programs may change these maps (although page 0 and whatever pages
l{kely to c_(')ntainithe top of the Supervisor stack should not be remapped, or memory refresh may fail).

However, for simple programs the initial mapping may be best left alone.

(r, Context ‘ Segment Map : \
: 1024 * 16
@ Page Ma
; 9 p
1024 * 16
68000 4
T
3) Reserved
4) |@)] (o)
(6) |
Reserved
Protection (2) (2), (12)
\ physical
(4) I
l Adress 7 address
Space
Page Control (23 bits)
(11)
| S)
Protection Page Control Address Space
- execute - accessed -onboard
- read - moditied - offboard
- write «i/0

\ - user + -linvalid /

Figure 3-2: Memory Mapping on the SUN Processor

Each actually existing page of on-board RAM is initially mapped so that its physical and virtual addresses

11 DECEMBER 1981

4 ‘ . SUN USERS' GUIDE

arc identical. This means that each segment, starting at segment 0, is fully mapped (up to the limit of
available memory). Segments are only initialized for context 0. Segment protection is set so that both

Supervisor and User modes have Read, Write, and Execute access to every segment.

Two other physical address spaces arc mapped into the memory address space. The first 64K bytes of
MultiBus 1/0 space is mapped at the top of the virtual address space, and extends for 32 pages (64K bytes).
Thus addresses from 1F0000 to 1FFFFF get mapped to the Multibus 170 space. The Ethernet interface and

most commcrcially available Multibus 170 devices use this space.

The rest of the hlgh megabyte of mappable address space is mapped as MultiBus memory. Address from
100000 to 1EFFFF are mapped to Multibus memory space addresses 0 to OEFFFF, respectively. This is

where the frame buffer reside_s.

The physxcal address space (the 24 bit addresses used in the mtemal bus) is divided into elght parts, as

descnbed below. | |
0 - 1IFFFFF B Mapped address space, as described above. There is usually 128K 1o 256K bytes of on-
board RAM, with a limit of 512K. This space can also be mapped into the Multibus 170 or
~ Multibus Memory space.

200000 - 3FFFFF‘ On board PROMD See the discussion below on “bool: state”,
400000 - SFFFFF On board PROMl

600000 - TFFFEF The on~board double UART. Channel A data register is at 600000, command register at
600002, Channe] B data is at 600004, and B command is at 600006.

800000 - 9FFFFF On board Tlmer chxp. 800000 is the Data register, 800002 is the Comménd register.

AD0000 - BEFFFF Page map in “S'UN’-Z, PID register in SUN-1.
. . . . - - . N

C00000 - DFFFFF Segment map in SUN-2, page map in SUN-1.

E00000 - FFFFFF Context register in SUN-2.

In “boot state”, the state of the system after reset, read and execute accesses to any location Oxxxxx in
mapped addresss space are redirected to come from the corresponding location 2xxxxx (in the PROMO
address spacc), but write accesses to the mapped address space go to on board RAM. Also, all interrupts
(including normally “non-maskable” oncs) are inhibited. In this way it is possible to initialize RAM just after
reset. Boot state is cxited on the SUN-1 processor by wrmn<7 to OxFOOOOO and by wn(mg to the PROMO |
address space on the SUN- 2 processor. |

11 DECEMBER 1981

USING THE SUN PROCESSOR , o 25

When the monitor is initialized, it scts the Supervisor Stack Pointer to 0x1000, and the User Stack Pointer
to the top of available memory. User 'programs may change these registers, providing that they do not cause

the supervisor stack to overflow into unmapped address space.

More exact detail on the memory mapping, as well as constant definitions uscful for C programs, may be
found in /usr/sun/include/sunmmap. h. (Note: sunmmap.h currently describes only Version [

processors.)

3.6. Traps ‘

" The monitor initializes the trap vectors so that it gets control of any exception or interrupt. Some, such as
the memory refresh timer interrupt, are handled internally. Others have special meanings (for example, the
“trap #1” operation is treated as a breakpoint trap). For cxceptions or interrupts not internally handled, the

monitor will print a message such as Exception: Tr and then return to command level.

' The messages Ibrin;ed use a two-letter code; here is a list of these codes and their meanings.

11 " Illcgal instmction: an illegal instruction code was executed _
Zb : VZerQ [’)ivi_éiebz division by zero
Ch _Chéck: a CHK instruction faulted -
TV o | 7 'mPV: a IRAPV (trap on overflow) Qas taken
i Pr) | | '-'Privileg?c vidlétion: attempt made to execute privilegéd instruction while in user state

UO 'Unﬁnpleméﬁted 0: an opcode 1010 was exccuted (emulator trap)
Ol 7 ' rnykximpIemgnted 1: an opcode 1111 was»executed (emulator trap) |

Un ‘ UMgned: trép was made to unassigned vector.

L1, L2, L3, L4, L5, LB
Interrupt Autovector: an Autovectored interrupt was taken at one of levels 1 through 6.

Tr Trap: a trap instruction was exccuted.

Several exceptions are handled specially by the monitor. A breakpoint trap (instruction “trap #17) causes

the message
Break at pc

to appear. A trace trap cvokes the message

" 11 DECEMBER 1981

2% ‘) _ SUN USERS’ GUIDE

Trace trap at pc

to appear. Use of the “Break” key causes
Abort at pc

to appear. In cach case, the pc shown is that of the next instruction to be executed. For further information

on the use of these three traps, see section 3.7.

A Bus Error trap (usually caused by attempting to access non-existant memory or devices) gives the

message

Bus Error: addrees'access -address at pc
Similarly, an Address Error trap (usually caused by attempting to access a word wrth an odd address) causes

the monitor to prmt
Address Error address access address at pc

In cither case, the access-address is useful in helping to determine the cause of the trap. Itis possxble to

continue from these Lraps although the apparent effect of the faulting instruction is not always defined.

“User Interrupt Vectors locations 0x100 through 0x3FF, are not available for use as such on the SUN
board due to the hardware design. For this reason, this area of memory is used by the ROM monitor for
storing globals and the RAM refresh_, routine.

3.7. Tracing programs N

The monitor provides sei'eral facilities for tracing program execntion They are quite primitive, however,
and basrcally require you to understand your program at the machine code level. However, if you have a
symbol table lisung of your program (created using nm68), you will be able to at least know where each
routine starts. S

3.7.1. Breakpoint traps

The use ofa Breakpointr trao (BP’I‘) allows_ to run a program and regain control when execution reaches a
certain location The monitor currently can only maintain one breakpoint trapy at a time. A breakpoint trap is |
sct using the B command after ngmg this command, you will be given the address of the previous BPT and

prompted for a new addrcss For cxample
Break 0010007

means that a BPT is already set at location 1000. At this point, you could type a 0 to clear the BPT a retum to

leave thmgs as they are, or a new address at which to set a trap (the old trap will be cleared)

If you had gained control of your program before sctting the trap by using the “Break” kcy, you might

want to continue it using the € command. Otherwise, you will probably want to start the program using the G

11 DECEMBER 1981

USING THE SUN PROCESSOR ' 27

command. Execution will then proceed until the trap is reached, at which point you will get a message such as
Break at 001000

At this point, you may examine the location at which you sct the BPT and you will find that it contains the
original instruction. You may clear the BPT or set a new one at this point. If you do not, you may continue
using the C command, which will execute the “broken” instruction, then reset the BPT' and continue. If you
give an address to the C command, the breakpoint trap will not be resct, unless for some rcason you take a

Trace trap.

If you load a new program while a BPT is set, the monitor will normally be able to detect this. On the other
hand, if you give the K cqmmand (“Soft Reset™) while a BPT is set, and then set a new one, wicerd things will
happen if the first trap is taken. Jeff'should fix this!

3.7.2. Trace traps

- The suppoi’t for Trace traps (single-stepping a user program) is even more minimal than the support fori
Breakpomt traps To set a trace trap, you should use the R command, proceed to the Status Register (SR), and
alter it so as to inclusive-OR it with 0x8000. Similarly, the trace trap can be cleared by ANDing the value of
SR with Ox7FFF

Once the trace bit is set in the SR, you should then give the C command to continue the program (the G
command cannot be used in this way); to start a program with the trace bit set, give the command C starting-

address. Subsequent steps may be made by using the C command without an argument.

~ For compléx reasbris, it is not possible to single-step after a Breakpoint trap is taken, unless you first clear
the BPT. Once you have steppcd one instruction, you may then reset the BPT. Jeff may fix this sooner or

 later.

3.8. Emulator Traps

The ROM monitdr is ablé to provide scveral services to user programs via "Emulator Traps" (EMTs). An
EMT is a convenient way of entering the monitor which does not depend dircctly on the absolute addresses
uscd. Instcad of exccuting a jbsr instruction, a program wishing to use the emulator first pushes a "trap type
code” on the stack, and then executes a trap #15. instruction. In most other respects the operation is

identical to a function call.

The services provided by the EMT facility fall into three categories: information, 1/0, and memory-
“management. Some of these, such as the memory-management operations, are restricted to supervisor mode. _

The following section gives the C-language calling sequences and descriptions for the EMTs; assembly-

11 DECEMBER 1981

2 . | " SUNUSERS GUIDE
language dcfinitions arc available in the file Zus r/sun/include/sunemt.h.

In general, if one of these functions encounters an error condition, it will return the value -1. In particular,
attempting to executc a trap reserved to supervisor mode while operating in user mode will result in an error
return.

3.8.1. Information EMTs

int emte ticks() .
B ~ Returns the number of milliseconds since the monitor was last booted. This is incremented
whenever memory is refreshed, at least every 4 milliseconds. The accuracy is sufficient for

time-of-day uses, if the crystal on the processor card is working right.

int emte getmeméize()
Returns the size of the on-board RAM in bytes.

int ‘emte version() ;
~ Returns the "version" of the ROM monitor; the most significant byte is the major version
- pumber, the next byte is the minor versicn number. For example, 0x0105 corresponds to
version 1.5,

3.8.2.1/0 EMTs

emte putchar(c)
. char ¢; : '

Prints. the spééiﬁcd character on the Console. If ¢ is a linefeed or a carriage return, then it
is followed by a carriage return or a linefeed, respectively. The 170 is done using busy-
waiting.

char emt« getchar
‘ Returns the next character typed on the Console keyboard. Normally, the character is also
echoed on the Console. The I/0 is done using busy-waiting.

setecho(flag)
int flag;vf

Controls whether characters input from the Console by emte getchar () are cchoed or
not; they are echoed if and only if f1ag is true.

3.8.3. Memory Management EMTs
These EMTs are provided for use by the kernel of an operating system, and are restricted to supcrvisor
mode only. They are necessary because it is not possible to access the scgment registers for one context while

running in another context. Since there may be no properly initialized segments in a given context, it is not

11 DECEMBER 1981

USING TIIE SUN PROCESSOR ‘ ' 29

possible for the kernel to simply switch contexts before changing the segfnent map; this 6pcrati0n must be
done by code running cntirely in ROM and processor registers. The memory management EMT's provide this

service. Notc that it is essential that the context register not be changed except via the EMT described below.

shart emte getsegmap(cxt,segno)
int cxt;
int segno;

Returns the contents of segment map entry number segno in context number cxt.

emt« setsegmap(cxt,segno,entry)
int cxt;

int sagno;

short entry;

Sets segment map entry number segno in context number cxt to entry.

int emte getcontext() :
Returns the current value of the context register.

emt+ setcontext(cxt)
int cxt;

Sets the context register to cxt.

Here is an example of the use of the emt« ticks global to derive an accurate timer, counting seconds.

(Warning: a previous version of this example contained a program logic error that rendered it inaccurate!)

main()

Tong NextTick; /* value of RefrCnt at next second */
long ThisTick; /* temporary; used to avoid a race */
long seconds = 0;

ThisTick = emtticks(); /* initialize loop invariant */

for (::) {
printf("Time is %d\n",seconds++);
NextTick = ThisTick + 1000; /* predict next second */
while (ThisTick < NextTick) /* busy-wait */
ThisTick = emt_ticks();

11 DLECEMBER 1981

'SUNUSERS'GUIDE

11 DECEMBER 1981

THE SUN GRAPHICS SYSTEM ' k33

4. The SUN Graphics System |

The SUN graphics' system is a high-resolution bit-mapped frame buffer on one Multibus board. The
general organization of the graphics board is illustrated in Figure 4-1. There is only a small amount of
hardware assistance to perform the simple high bandwidth opcrations (called “RasterOps™). This results in a

simple, yet flexible graphics device, with high enough performance for sophisticated user interfaces.

~ 3 ~

* Bit-Manipulation

* X/Y Addressing > Hardware
* Graphical Object Cache A

* Next Address Generation M

* Graphical Object Selection > Software .
* Function Selectipn J

Host 7 RasterOP | Frame] video

Processor Hardware Buftfer Monitor

RasterOP unit performs read-modify-write cycle

Destination in frame buffer

\ ~ Source operands can come from frame buffer or host computer _)

Figure 4-1: The SUN Graphics Board

4.1. Graphics on the SUN workstation

As shown in Figure 4-2, the nominal viewable area of the screen is 1024 pixels high and 800 pixels wide in
“portrait” mode (similar to the Alto display). Other configurations (like the Xerox Large Format Display) are
also possible with appropriate changes to PROMs on the graphics board. The Large Fofmat Display is 808
pixels high and 1024 pixels wide. This display is compatible with the display used in the Xerox "Star” 8000
and "Dolphin” 1100 workstations. The points are addressed by X and Y (column and row), starting with (0,0)
in the upper left corner of the screen. From one to sixteen consccutiv.e pixcls may be read from or written to

the frame buffer in one memory cycle (one microsecond).

Figure 4-3 illustrates the concept of "RasterOp™, as developed by Newman and Sproull [14]. A RasterOp

11 DECEEMBER 1981

n - " SUNUSERS GUIDE

"Portrait"” Mode | "Landscape" Mode

00 x 799.0 00 x_
T I,
y y
0,807
1023,1023 1023;1023
Size: 1024 * 1024 pixels Size: 1024 * 1024 pixels
* Visible: /800 * 1024 pixels Visible: 1024 * 808 pixels
Invisible: 224 * 1024 pixels Invisible: 1024 * 216 pixels
\ Updates: 16 pixels/cycle Updates: 16 pixels/cycle

y

Figure 4-2: The SUN Graphics Screen

sets a destination rectanglé on the screen to a bit-by-bit boolean’ function of three variables: its original
contents (DST), a source rectan°1e (SRC), and a repeating bit pattern (PAT). The SUN graphlcs system
allows all 256 possible Raster-OP functions, although only a few are used in practice.

i
For example, to clear die entire screen, the constant function 0 is applied to the viewable rectangle. To
flash a certain window, the function NOT Dst is performed on that window. To wrile a character, the Src
function is used, while NOT Src writes the character inverted (black on white), Dst OR Src overwrites
(paints) the character, and Src OR Pat writes the character with a backgmund pattern, 'I‘here should be a
standard graphics package to provide access at the RasterOp level.

4.2, Detailed Operation of the Graphics Board
The graphics board decodes 20 bits on the Multibus mcrﬁory address lines, in the ficlds shown in Figure 4-
4. By encoding these opcration bits in the address, repetitive operations like gencralized rasterOps can be

done very quickly. There is a patent pending on this design.

Up‘ to eight graphics boards may share a single Multibus backplane, with the high 3 bits sclecting the
board. Each board occupics 128K bytes of Multibus memory space.

11 DECEMBER 1981

THE SUN GRAPHICS SYSTEM B X

*RasterOP" Model (Newman & Sproull):
DST « f(DST, SRC, PAT)

Destination Source Pattern
*x *" RasterOP *x ¥ bdddokddhtd
* * * * E3E ST 223
* * < * * PRy ppp
* ~ * gk T3

* ¥ * % Fdkk & 3
] » & * 132372327
® - A * * g korkky

E * * * kkk
Dst « Constant

Dst « Src

Dst « Dst OR Src AND Pat

Dst « Dst AND NOT Src

\ ~ Dst « Dst XOR Src .)

Figure 4-3: "RasterOp" Concept

1+

1

4+

Some mnemonié definitions for the frame buffer can be found in the framebuf . h header file (sce scctimi
2.3 for more information). All the symbols begin with the letters GX. To perform an operation on the
graphics board, you must combine the bits together, cast the result to 2 short*, and reference the pointer.
There are also a few combined symbols that can appear in C assignment conexts. See the end of this section

for some examples.

The GXupdate bit (bit 16) is on if the frame buffer is to be modified. Usually several operations are
perfomed with this bit off, to set up the control registers and one of the coordinates. Then this bit is set to

actually perform the desired modification of the frame buffer.

Bits 14 and 15 select the operation. If they are set to GXnone then the data on the data bus is not used
(atthoughan X or Y address may be loaded in this cycle). If they arc set to GXothers then one of the four
~ control registers will be written with the data. 1f they are sct to GXpat, the pattern register (sometimes called
the “mask”) will be loadcd from the data bus. If they are set to GXsource, the data bus is loaded into the

“source” register. This is the normal case for copy operations.

When GXothers is specified, the control register number is given in bits 1 and 2. GXfunction loads the

function register from the low-order eight bits of the data bus. The function rcgister can be thought of as a bit

1t DECIEMBER 1981

34 _ SUN USERS GUIDE

19- 17 16 15-14 13-12 11 '10 - 1 0
Unit Address 0=X| Frame Buffer Address 0]
1=Y

Number Update Operation Pair or register number

l ' 2.4
Oto?7) Oto3

0 - No Operation

- Function
- Width
- Controt

- Interrupt
clear

W N -0

1- Load Control Réglsters

2 - Load Pattern Register

\ 3 - Load Source Registar , ')

Figure 4-4: Graphics Board Address Decoding

vector, indexed by Ppst+2'src+22Pat. For example, GXinvert=0x55 inverts the destination,

GXcopy =0xCC copies the source to the desitination, and GXc¢1ear =0 clears the destination.

GXwidth is the register that determines the width of the RastcrOps. It is loaded from the low order 4 bits
of the data bus, with 0 meaning 16, so ité valid range is from 1 through 16. If it is less than 16, the high-order
bits of the‘ data in the source aﬁd pattern registers will be significant on RasterOp‘s.i Gch ntrol loads the
interrupt level (low ordér 3 bits), interrupt enable, (bit 3, symbol GXintEnabl e), and video enable (bit 7,
symbol GXvideoEnab1e) bits from the data bus. Accessing the last control rchstcr GXintClear, must be

done once after every video reuesh mterrupt to clear it, when it is enabled

There are four pairs of ten-bit address registers (sometimes called "cursors"), selected by bits 12 and 13. Bit
11 sclects ~cither X or Y of the pair, and bits 1 through 10 of the address are loaded into the selected address
rbgistcr. Note that every read or write refercnce to the graphics board has to load one of these address
registers, while it might or might not (depending on the GXupdate and dpcrzltion code bits) modify the
frame buffer. R -

The low order bit (bit 0) of the address must always be zero. This design was meant to be used efficiently
with auto-incrementing addressing modes. For example, the following function displays an 8 by 8 “cursor” at

the given position:

11 DECEMBER 1981

THE SUN GRAPHICS SYSTEM 35

DisplayCursor{ x, y))
short x, y; /* screen coordinates of upper left corner */
{

static short cursor[] = { 0x9200,
0x5400, /* Left justified bit array */
0x3800,
OxFEOO,
0x3800,
0x5400,
0x9200,
0x0000};

register short
*cursorPointer = cursor;
*xPointer = (short *)(GXUnitOBase | GXselectX),
*yPointer = (short *)(GXUnitOBase | GXupdate
| GXsource | GXselectY);

register short junk; /* something to move */
GXwidth = 8;)
GXfunction = GXinvert;
xPointer += x;
yPointer += y;
) *xPointer = junk;
*yPointer++ = *cursort+;
*yPointer++ = *cursor++;
*yPointer++ = *cursor++;
yPointer++ = ®cursor++; / Each of these is one */
*yPointer++ = *cursor++; /* 68000 instruction */
‘*yPointer++ = *cursor++;
*yPointer++ = *cursor++;
*yPointer++ = *cursor++;

11 DECEMBER 1981

36

11 DECEMBER 1981

SUN USERS' GUIDE

TIHE MOTOROLA 68000 DESIGN MODULE R ¥ |

5. The Motorola 68000 Design Module

The MC68000 Design Module is a board with an MC68000 processor, memory, and some minimal /0
devices, for designing and cvaluating the MC68000 processor. It was deisgned for the EXORciser dcirelopment

system, but we use it with a scrial connection to a VAX and a standard terminal.

Before acﬁuzilly using the 68000 design module, read the Design Module User's Guide [12], a black booklet
by Motorola that describes MACSbug, the monitor that resides in PROM on the design module, and the 1/0

devices available,

5.1. Preparation of Programs

Write the progfam as an ordinary C program, called <name>.c. Do not rely on <stdio.h> - it does not
apply to the Desxgn Module [Vaughan has rigged up some of the C library for the design module, and it _
should be referred to here.} '

Section 2.3 describes some header files that can be included in C prograrﬂs, and section 2.4 describes some
libraries available. As described in section 2.2.1, you probably want the -vm option on the c¢68 command
line. E '

5. 2. Compilation
To compile a smgle prooram whxch can be loaded into thc 68000 design module (the Motoro]a supphed

board), use the command
€c68 -vm -d -n <mame>.d1 <name>.c

Error messages w111 be printed on your terminal. Errors may arise at any of several stages preprocessing,
compilation, assembly, and loading. To understand these stages see section 2.2.1; for the moment assume that
you have got your program to compile successfully on the VAX. You now want to down-line load and test

your program, which you will find in your working directory as <name>.d1.

5.3. Down-line Loading | | |
Downloading is the process of getting your program into the 68000 from the VAX or wherever you kecp
your program. While it is nccessary to compile on the VAX, the result of compilation can be put on any
computer. Gef your 68000 to the point where you can talk through it (in transparent or P2 mode) to the |
computer where your file is. Type *A to return to MACSbug (the 68000 board monitor). Note that this sends
TAtX to the host; before downloading you will need to compensate somehow for this. A carriage return will

suffice on most systems. To send a return to the host without reentering transparent mode, type
*

11 DECEMBER 1981

33

(asterisk return) to
*text

SUN USERS’ GUIDE

MACSbug. This will send the return. In general typing

will send the text to the host; you will not sce the reply if any. See section 5.8 for more information.

| The downloading command is RE (for REad). This command waits for the host to start typing out your

file; when this hap

~each line of input;

pens it reads it into memory, then at the end halts and types *. Normally REad checksums

each failing line gencrates an error report on your terminal.

RE may take any of Lhe followmg arguments:

=fext

’As it takes a certain dexterity to persuade the host to delay typeout until you do the

tA*<return>RE there is an option to send a line of text to the host as part of your giving
the REad command. Thus if you say to Unix
' RE =d11 foo.dl '

' then the file foo.d1 will be loadcd into the 68000 The d11 program simply pads each
, hne witha fcw nulls to allow loading at 9600 Baud.

This option displays the data being read. It permits you to watch the file being loaded so

‘that you can see what progress is being made. For example if the host dies (so becoming a

heavenly host) you will have no indication of this without the X option. A disadvantage of

the X option is that any checksum error report will disappear off the screen within 24 lines

—C«

of typeout, so that you must watch the whole loading process if you want to be sure of
catching checksum errors.

(Thi&optioh ignores checksums. Uscful only on rare occasions.

WIth all opnons your command would look somethmg like

" RE ~CX=d11

5.4. Running

foo.d1

To run the program type”\ o

6 1000

to MAcsbug If the program termmatcs normally it will type an asterisk, the \dACSbug prompt, to mdlcate that

it has returned to MACSbug

If G is given without an argument, exccution starts with the virtual PC (contents of location 400, see

below). This permits an interrupted program to be restarted from where it was interrupted.

11 DECEMBER 1981

THE MOTOROLA 68000 DI:SIGN MODULE ‘ 39

5.5. Debugging Aids | |
MACSbug offers debugging facilitieé that are moderately well documented in the design module manual.
Here are the highlights.

5.5.1. Display
You may display the contents of any register merely by typing its name. Names arc PC SR SS US DO
D1 ... D7 A0 A1 ... A7. Youmay see all D registers by typing D, and similarly for A.

To Display Memory, type:
DM <(address>

(in hex, all values are in hex). The 16 bytes starting with that location are typed out. To see more than 16,
supply the number as a second argument. Thus DM 1200 100 will fill most of your screen with bytes 1200
to 12FF. 4

* The memory values you display are real, but the register values are virtual. The rcgister values are those
that held when yo:ir program was last interrupted; they are kept in memory locations 400 to 44B inclusive, in
the order PC SR D A US (where A7 is taken to be SS, the system stack pointer, rather than US, presumably

since it happens to be dumped while in system mode).

5.5.2. Setting | |

To set register R to value ¥, tybe R V, as in D3 247. These settings will take cffect on the processor
proper as soon as you type G. To set all of the D registers, say D: and MACSbug will show you each in turn;
for each you shou!d either type return if you want it unchanged, or a value, retlim, if you wan to change it to

that value.

To Set Memory, say
SM <address> <value> <{value>

The values will be stored starting in that address, immediately. Values may be from 1 to § hex digits. Each
value is stored in the next few bytes, as few as possible consistent with the number of digits (no zero

suppression). Thus

SM 4000 12 34567

DM 4000

004000 12 03 45 67 ...

SM 4000 00004321 6547

DM 4000

004000 00 00 43 21 65 47 ...

11 DECEMBER 1981

a0 : o) " SUN USERS’ GUIDE

5.5.3. Breakpoints

To set a breakpoint use the command
BR <address>

Your program will stop when it reaches that address. This is unplcmented by placing a 434F (TrRAP 15)
instruction at that address, not at the BReak command but at the G command. The instruction is removed
after it has had its cffect; it will be restored again at the next G. Note that CALL, described below, does not
install the breakpoints. The effect is that you cannot see a breakpoint merely by looking at mcmory, to tell

what breakpomts are sct type BR without an argument.

To clear a breakpoint, type:
BR -<address>

To clear all breakpoints type
BR CLEAR

To sec what breakpoints are set type
.BR

If you shquld reset the computer while your program is running, all the breakpoihis will s(ay put since
' MACsbug will have forgotten where it put them. When a TRAP 15 is encountered for which MACSbug has no
record, it types ERROR and halts your program. You will have to fix it yourself, either with SM or RE.

You may delay a breakpoint so that it takes effect only on the nth time it is encountered by saying '
BR <address>:n

On the nth encounter it breaks. When the program is restarted n is forgotten about, i.c. n reverts to 1, the

default. To restore n Agive the command again.

Toseta temporary brcakpomt one that clears itself when cncountercd give the command
G TILL <address>

The address gives the stop (unless some other breakpoint or the end of the program is encountered first). The
start is the virtual PC., ' '

§.5.4. Tracing
To single step through a program, say TR. The program will begin execution from virtual PC, zmd halt

after one instruction, typing out the trace information (sce bclow) followed by
(34

When the prompt is :* it means that you can type carriage return as a synonym for TR, so that you can

convenicntly trace a serics of step. If you type MACSbug commands at any point, the prompt reverts to *.

TR »n will trace # steps, printing trace information on cach step. To trace n steps without any printout at

11 DECEMBER 1981

THE MOTOROLA 638000 DESIGN MODULE _ 41

all, do TD CL (see below).

5.5.5. Trace Display | _

Whenever MACSbug interrupts your program by reaching a breakpoint or after onc instruction in the case
of tracing, or when you type TD, it types out sclected information. The default is that it types-out the contents
of all the registers. You may modify this default as follows. Each TD command is sticky, ie. its effect is felt

till you give another TD command.

1D CL Displays nothing. Cannot be combined asin TD CL PC

D ALL _ ' ;"Restorevs the default. |

™00 'Dvi:s:[,J:IaysjPC (similarly TD PC,TD SR, ...butnot TD Dor 7D A)
™ D0.0 Do not display DO (similarly TD PC.0,7D SR.0,.)

TD DO.1 " Di;play ie'ast s?gniﬁcant byte of PC

0 DO .2 | ‘Dispiay lower word of DO

10 DG.3 Display lower three bytes of D0 (only effective after TD CL)

The short forms are helbful in two ways: they give a less cluttered display, and they permit tracing to
happen faster. TD CL permits muitistep tracing (asin TR n) to procecd independently of the terminal speed,
~ though not at full vrhachirner_r speed unfortunately. To see the final register values when the tracing stops do TD |
ALL then TD. .

You may also turn words of memory into pseudoregisters which can then be displayed along with the real

registers. To define say the 2-byte word at address 4564 as pseudoregister M3, say
" W5.2 4564 o '

You may now ff;fcr to M5 in the TD command, asin TD M5, or TD M5.1, or TD M5.0, each of which

displays the appropriate amount of this 2-byte register. Pscudoregisters may not be larger than 4 bytes.

A pscudoregister may be relative to an address register, thus:
W3.4 4(AB)

The location is 4 past what A6 points to. A6 is the stack-frame base register for C programs, and 4(A6) is
where the retﬁm address lives, so that you can monitor the calling address while &acing, as a supplement to
the PC. Similarly the arguments are (in order) 8(A6), C(A6), 10(A6), ..., whilc the locals are (in order) -6(A6),
-A(A6), -E(A6), ... provided they arc all intcgers (4 bytes); compensate accordingly if noL Function

arguments are always converted to the C type int. If the routine uscs register variables, subtract 4 for each

11 DECEMBER 1981

8 : ' ' SUN USERS’ GUIDE

register variable in computing these offsets.

5.5.6. Symbols

To assign the symbolic name FOO to a value, say
SY FOO <value>

To sce the value of FOO say
SY FOO

To see all symbols, say
' SY

- See section for a discussion of the symbol table produced by the compilation/loading process This table may

be operated on with the above symbol manipulating commands. But Macsyma itis not.

5.5.7. Numenc convers:ons . - o
The cv (ConVert) command will display both hex and decimal values of its argument Precedmg the
argument with & or nothmg denotes decimal, with § hex. The printout observes these two conventions.
Thus: , '
Cv 45 ,
$2D = 245

You may evaluate a sum of two numbers by using , as infix plus asin

Cv 45,3
$30 = 848

This does not work for differences or for three elements at once (do it in stages).

5.6. Symbol Tabl'es |

Symbols are gcncrated and Ioaded automancany along with the program. They reside in the region from
6BA to FFF. To prmt out the symbol table type SY (sce the section earher on dealing with symbols from
MACSbug). Loading a new program destroys the old symbols (that’s the best we can do with MACSbug, sorry).
Sometime an option will be installed permitting you to produce .d?1 files without symbols, to prevent this
problem. ' | -

Resetting MACSbug also appcars to make the symbol tablc go away. This is much less destructive than
rcading in another symbol table however. All that needs to be done to restore the iﬁvisible symbol table is to
sct the word at 576 (remember this as 24 squarcd, cven though 576 is really hex) to the first empty Word of the
table, which can be found by printing out the table itself. The starting address of the table will be found in
576 (and in 572) since this is the pointer to the first free table entry; when MACSbug thinks the table is empty
this pointer coincides with that pointing to the beginning of the table (572, or really 570, these are 32 bit

pointers but it is convenicnt to work with them as 16-bit ones).

11 DECEMBER 1981

THE MOTOROLA 68000 DESIGN MODULE » 43

The format of cach entry in the table is an 8-bytc name followed by a 4-byte valtic. Thé name is left
justificd, padded with blanks, starts with an upper-case letter or period, and may only contain letters, digits,
period, and the “$” symbol (at least if you want to be able to refer to them when talking to M;l.csbug).
Knowing this it is gencrally not too difficult to spot the end of ﬁlc table by relying on the Ascii part of the DM

printout.

You should set 576 to the exact first free entry if you expect to be adding symbols manually, as in SY FOO
33. Otherwise you can err on the low side by up to 11 bytes when in doubt or haste.

5.7. Disassembly , 7 _
The DM command is not much use in following code in memory. To make it easicr there is a disassembly
program, dasm. d1 on A/' usr/sun, which when loaded will run in the 6000-7000 region of memory.

Provided your programs do not reach into that region you can leave the disassembler there permanently.

Teo inépcct locations starﬁhg ifrom n, enter n into DO and type G 6000. You can now single-step through
the code by typing any character but Q. Each step will display the next instruction and the address it is at.
The program will return to MACsbug cither on encountering an illcgal instfuction or on your typing Q (for

| Quit - it must be Eapitalized,‘ but that’s how you have to talk to MACSbug).

Dasm understands symbols if present in the symbol table. When loaded it brings its own symbols with it,
"s0 you have to load the program to be debugged after you've loaded Dasm. (This will be fixed soon. [Hal -
S M]) o - L | n " . .)

5.8. P2/1A : _ »

~ P2 mode on the 68000 is a software and hardware combination that splices out the 68000 from the terminal-
host path it normally intcféépts. This is accomplished when you type P2 to MACSbug by setting the RTS bit
of ACIAI high. Random logic attached to this bit then routes input to one serial connector of the board
directly to the output of thé other serial connector. Terminal-host traffic then proceeds at a rate dependent
“only on the host and the tcrmina]. MACSsbug monitors the terminal to host traffic (it is physically possible to
read the traffic in either direction) and exits from P2 mbdc when 1A is seen. 'This assumes that the speed of
ACTAL is set to agree with that of the traffic, which it need not be. The *A is the default escape; to set some

other escape, say 1V, type
P2 v

Since the 1A is scen by the host and MACSbug simultaneously, there is no way in this arrangement to prevent

sending the escape to the host, so like any wise jailbird you should plan your escape carcfully. MACSbug adds

11 DIECEMBER 1981

4 ; _‘ | SUNUSERS' GUIDE

insult to injury however by transmitting X to the host after sceing the tA. Unlike the tA, the tX is not a

default but is in Prom, so learn to live with it.

If you run your terminal at 9600 baud and the host at 1200 baud, a sensible arrangement for peoplz at
home, you will hit the obvious snag when you usc P2. As should be clear from the above diséussion, while

you must change your terminal’s speed, you need not change ACIA1’s speedv.

A more “brute force" way of getting out of transparent mode is to press the reset buuon on the design
module (the bkck one) This will clobber the registers and resct MACSbug, howcver Pressing the red abort
button does not leave P2 mode but makes MACSbug forget that P2 mode IS on, leavmg MACSbug in a
confused stase. '

5.9. Memofy Layout
Mgmory in' the Motorola Design Module is laid out as follows:

' - 0-3FF Interrupt vectors
400689 wacsbug variables
6BA-FFF | 'MACSb‘l:Jg symbol table
1000-7C6O ' Usef s'paceby |
7E06~7EFF B - User étack (more ﬁay be taken if necessary, clcarly)
JF00-TFFF System sta;ilg (tﬂe system/user distinction is vague on this board)

11 DECEMBFR 1981

AN INSIDER'S GUIDE TO SUNET 45

6. An Insider’s Guide to SUNet

This chapter describes the current state of network communication around here. Ethernct is used to
connect computers within the same building, with repeaters and gateways being used to temporarily extend
the Ethernet between buildings. Arpanct connccts several machines, and some are connected to Telenet,
Tymnet, and other ad-hoc networks. Eventually we hope to provide other communications media for the
intermediate distance needs, like 10 Mb standard Ethernet, Fiber-optics, point to point serial links, packet
radio, or a broad-band cable TV compatible system. The rough topology of the nctwork is illustrated in

Figure 6-1. For more information see the references [7] and [16].

This information is really qdite volatile, so it is imperative that this chapter be kept up to date. Each
description below consists of the computer you want to come from, followed by a colon, and the command
/

that invokes the given program. A short description includes the hosts you can go to with that program.

6.1. Remote.Terminal Programs

VAV: telnet host _

Pup user telnet [S] to any Pup host with a telnet server running. Currently this means
Shasta, Diablo, Helens, Lassen, DSN, and Sail. When the gateway is working you can get
to Sumex and "Tiny,"” the 2020 at the Medical Center. Documentation is obtained with the
man telnet command. Telnet has transcript and shell escape options. Type code 036
followed by c to get out (usually control-t or control-shift-N). Pup tclnet has gateway
capabilities to the Arpanet. If the host name you give is not in the PUP network directory,

~or there is no PUP route known to it, it will connect to the telnet gateway at Sail and try the
Arpanet.

Sail: r chat Pup user telnet as above. Control-meta-q to get out. Currently it simulates a very simple
‘terminal, so you can’t even do things like backspace.

Alto: telnet host
Pup user telnet also, based on the chat program. Simulates a simple screen terminal, on
which vi almost works. Also available as a boot file.

Alto: talk host The talk program gives you multiple windows (stacked vertically), and you can run
emacs or vi in them, so it is currently the default for Unix telnet servers. You can create a
window of 52 lines, and then specify term bigtalk to Unix to get a big screen. »

Alto: dmchat host
Another terminal program using Pup telnet protocol, based an the Chat program. This one
gives you one big "datamedia" window, which works well with Sail. If you arc using
dmchat, tell Unix you are a dm2599. You must have the fixed width font snail10.al
on your disk for this to work (or an entry on your user. cm).

Sail: dial diablo

11 DECEMBER 1981

4 o SUN USERS’ GUIDE

Terman
CERAS A
R
(LOTS) D"—
[s]
2 2060
Durand
23033
(ISL) ‘ AEL v
2 Vax I va Alto
1080 ERL CiT
2060 . . Vax -
Vax Via Crespi Tip (CSL)
MH |wite fJordan | ¥ (R} — sun
P
Alto (CSD) {4 Doiphin (Psych.) .
[El 2 SUN I Pine
1 _
g | Hall
{temp.) [‘;_ [:;] (Proposed Gateway) CIS Alto
" . . Tip I
Campus Drive a
[”]
E R t m Dolphin
epeater meamemme Stanford Ethernet 1088
206?8B Gateway ———=—— Proposed Extensions SUMEX 2A0n20
(«]

N~ ‘ = J

Figure 6-1: Topology of SUNet

Simple 1200 baud serial line to Diablo. Loses characters routinely. Use only when all else
fails (which is all too often these days). Get out with control-meta-q.

" VAX:sail/score
sail runs on Diablo, scorc runs on Shasta. 1200 baud scrial link. Usc telnet sail or
telnet score instead.

Score: telnet shasta ,
This currently goes through Sail’s telnet gateway. Typing this command will be guaranteed
to get you there in the best possible way (dircctly over the cthernet in the future). There is
also a possibility of using the 1200 baud scrial link. This and the score program are
mutually exclusive. Loads down score badly. Exit with control * c.

11 DECEMBEER 1981

"

6.3. Walk Net (Tabé:transfer)

AN INSIDER'S GUIDE TO SUNET ; py

6.2. File Transfer Programs

VAX: ftp host Pup user ftp. Talks to any Pup server FTP, currently this means Shasta, Diablo, Helens,
Lassen, DSN, Sumex, Tiny, and any alto running ftp. Documented with man fip.

Sail: r pupftp Pup user ftp. Same as above. Experimental. Preferred way of getting files from VAXen to
the outside world. Use type X for 32 bit binary files. Documentation in
pupftp.tvr[up,doc].

Alto: ftp host Another Pup user ftp, as above. Prefered way of getting files to Altos.

Alto: ef tp Simple transfer of files from Sail. Self-explanatory. Now mostly outdated by ftp. It is still
used for sendind files to the Dover, but that should be done invisibly to the user.

Sail: r éftp 0ld, slow, but reliable way to get binary files between sail and ethernet hosts. Say 1 for
‘mode, using 1 for left hand bits.

VAX: eftp e[xr] host filename
Obsolete way of getting binary files to/from sail. Be sure to do a man eftp command, since
there are many obscure options. We ususally use e and often s for binary files and ¢t for
text files. For text files the command vtos x (for VAX-to-Sail) abbreviates eftp
reqtlv sail x, while stov (for Sail-to-vAX) abbreviates eftp xeqtlv sail x.

Sail: ftp A;ﬁane‘t-i}ost: |

Arpanet fip. Remember to use ascii mode or right curly braces (as well as other random
characters) will disappear.

‘Score: ftp ’hbsly Prefered way of shipping files around the Arpanet.

VAX: ansi [Toad] [init vol] [write files]
Reads ANsI standard labeled tapes. Works with VMS, RSX, RT-11, tapeia (with
- /Format:Ans1i), and vaxtap tapes. Text files only. Documented with man ansi

Score: vaxtap Writes and reads ANsI standard labeled tapes for VMS systems, also works with the ansi
program on Unix. Unfortunately it does not handle wildcards, so you need .MIC files for
large transfers.

Score: tapeio Writes and rcads ANSI standard labeled tapes for CIT, also is supposed to write DEC

compatible labecled tapes. You can exchange tapes with the ansi program with the
/format:ansi option. You must run the tapeTabel program on a new tape to write a
label.

Score: <su-net>taput
A really kludgy way of getting binary tapes to VAXen. Use fip to sail and pupftp instead.

11 DECEMBER 1981

48

11 DECEMBER 1981

" SUN USERS' GUIDE

SUNOS - A SMALL OPERATING SYSTEM o) A 49

7. SUNOS - A Small Operating System

SUNOS is a compact operating system for the Sun workstation. It manages asynchronous processes, the
memory map, and interprocess communication.

Process Services

spawn(function, argcount, argl, arg2, cel)
spawn ncew process, with stream args

wait(p)
wait till p holds (non-busy waiting)

terminate()
terminate this process

Stream Services

char * getc(r)' char *r
. getchar from stream r -

getcto(r, v) char *r,v _
get from stream 7 into char v

putc(c, w) char ¢,*w
putchar ¢ on stream w

int emptyc(r) char *r
predicate: stream 7 is currently empty

char *cstream()
create a char strcam and return its writer

Corresponding stream scrvices exist for other types of streams, namely short, integer, and reference, for

which the respective abbreviations s, 1, and r are used in place of c(character).

Storage Services

char * create(n)
create reference to start of new n-byte buffer

char * dupref(p) char *p
duplicate reference p

dispose(p) char *p
dispose of reference p

The put and get primitives use ordinary char* (reference) variables. Thus, to permit two processes talk to

11 DECEMBER 1981

S0 SUN USERS GUIDE

each other, usc cstream twice to produce two references, onc pointing into each of two new streams, and

then apply dupref to each reference to produce two more references for reading from those strcﬁms.

Processes may pass references around freely, provided thcy observe the discipline of using dupref(p) to
make duplicatc copies of references and dispose(p) to disposc of those duplicates. A reference may be
uscd cither for reading or writing so long as it is consistcntlyy used for that. Only one reference to a given
strcam may be used for writing, but any number of independent references may be used for reading,

permitting independent processes to read the same stream each at its own speed.

A file using SUNOS should #include "sunio.h" and should contain a sunos() function, which should
be confined to spawning an initial set of processes and creating and passing streams to them. The spawned
functions are animated (brought to life) after sunos() exits. There should be no main () function in the file,
this being provided by the library. If the user does provide a main() it will be substituted for the library-
suppljed main, in which case to ensure an orderly startup of sunos it should be modelled on the library

version, for which the source is in /usr/sun/sunos/sunos.c.

The library supplied main() initializes the stream and process managers and the interrupt handlers, then
calls #strtcal to start up calloc, and finally exits to calloc by executing a sleep. ¢strtcal in turn
initializes calloc and calls the user-supplied sunos() to create the initial processes, which come to life after

main() goes to sleep.

The char streams stdin and stdout are predefined and available to user programs. They aré initially
connected to the terminal I/0 of the Design Module. They may be set to other streams as desired; their old
values should be saved somewhere if it is desired to continue to communicate with the terminal. The

functions putchar and getchar are defined in terms of putc, getc, stdin, and stdout, as usual.

An example SUNOS program may be found in /usr/sun/sunos/example.c. This example implements a

quizmaster and a quizkid who fire streams of questions and answers at each other.

The cdm command will produce the corresponding .d! file, which includes the code from pman.c, strm.c,
and calloc.c. This file may be loaded and started in the normal way, namely via G MAINE. During the
settling in period, the SUNOS symbols will be loaded along with the uscr symbols to help the user distinguish
his bugs from SUNOS’s, but eventually they will be omitted in the interests of avoiding cluttering up the

user’s table. |

SUNOS is designed to perform best under heavy load. The total overhead to send and receive one datum _

11 DECEMBER 1981

SUNOS - A SMALL OPERATING SYSTEM ' , 51

on a'hcavily used stream, averaging in the overhead of context Switching and buffer switching, and assuming

usc of register variables and the readcharto (as opposed to readchar) primitive, is roughly 20 microseconds on
an 8 MHz 68000.

The prescnt versions of strm.c and calloc.c are close to final. However the present version of pman.c is too
trivial to be really robust; the calloc.c facilitics, as described in section 7.5, support much more robust process

managers.

Sunos implements processes (virtual concurrency), stream-based interprocess cbmmunication, and storage
management fér the Motorola 68000 computer. Although the design was done specifically for the 63000 to
avoid all compromlses that portability con51deraL10ns might have entailed, the semantics of the resulling
product turned out to depend only on a few archltcctural features common to many computers, namely the
existence of program counter, stack pointer, and status register, and the use of interrupts to schedule

extemal" processes

"This overview considers Sunos from a perspective midway between that of a user and an implementor.
(Implementors sometimes have difficulty presenting a pure user’s view too soon after completing the

implementation))

Sunos provides the following services.

7.1. Process-oriented Services .
Processes prdvi&e \'_rirtual concurrency. A process may be defined to be a stack (including its current

contents) together with the current state of the processor.

Processes fall into two categories, internal and external, distinguished by how they are scheduled by Calloc,
the Cpu ALLOCator. ' 7

7.1.1. External Processes

External processes are scheduled by interrupts and are not even known about by Calloc. They run in
system state, prccmptihg the CPU when their interrupt occurs. Each external process is responsible for
restoring the CPU to its original state on exit. External processes communicate with internal processes via
shared memory. Thc stream services are available to them, but they may also use more block-oriented foﬁns

of communication.

11 DECEMBER 1981

5 ' " SUN USERS GUIDE

7.1.2. Internal Processes
Internal processes share the processor under the control of Calloc, a round-robin prcemblivc scheduler.
An internal process may voluntarily surrender the Cpu at any time: otherwise at the expiration of its time

quantum the Cpu will be preempted.

Internal processes have two components, whimsically called the patient and the physician. The patient is
the normal part of the process while the physician acts as exception handler. The physician permits diagnosis
and debugging of erring processes, and is also responsible for preemption, permitting individual
implementations of both blocking and nonblocking mutual exclusion methods that the process may necd to
survive wnth Calloc’s asychronous preemptive scheduling. (This does not needed for Sunos’s stream facilities,

which incorporate their own nonb]ockmg mutual exclusnon)

7.1.3. Patient services

spawn(p,n,sl,....sn) _ ‘
spawn process p with n streams sl,....sn

waitp)

{vai; mitil p holds (non-busy waiting)
terminate() , .

terminate this process
error(e) '

commit error e
Medium-level atomicity is also brovided for. The patient may at its option run atomically for a limited
time. In this state preemptive scheduling by Calloc, though not by interrupt driven processes, is inhibited.

The patient enters atomic state by signalling its physician, typically by semng a global variable called Lock
and leaves atomic state by another signal to the physician, typically by clearing Lock.

(Medium-level atomlmty prov1des an attractive alternative to locking resources in use by a preempted
process. Such resource Iockmg is both cxpensive and a source of deadlocks. At the moment of preemption it
may often be cheaper to finish the critical scction than to incur the costs of blocking a process sharing the
resource presently accessed by the preempted process. Higher levels of atomicity may be provided in the
usual way, with the usual deadlock problems, using medium level atomicity to implement synchronization

primitives, for which low-level atomic instructions such as test-and-sct may not always be powerful enough.)

11 DECEMBER 1981

SUNOS - A SMALL OPERATING SYSTEM ' 53

7.1.4. Physician services

The physician services include all patient services except error(e), together with:

status()
supply physician with patient’s pc,sp,sr,error code.
sstatus()
set patient’s pc,sp,sr (rest is directly accessible)
" run()
run patient normally
V's'mglestep()
run patient for one step
breakpoint(a)

set breakpoint at instruction address a

~

The status and sstatus services are needed in case the physician has no other way to access the patient’s
program counter, stack pointer, status register, and error code (reason for invoking the physician). The rest of

the patient state is accessible

Physicians are expected to be implemented with system-supplicd routines as a rule, and are not themselves

candidates for diagnosis and debugging; this is a strict two-level approach rather than a hierarchical one.

The physician inherits all the capabilities (read-write-execute access rights) of its patient,, together with
write capability for the patient’s state (cpu registers and stack) and read capability for all code for which the

patient has execute capability. The breakpoint service provides an additional capability for code.

7.2. Stream-oriented Services

Streamns provide a form of communication between processes in which one i)rocess may write a sequence of
data into the stream and any number of processes may read that sequence from the stream asychronously.
The data types supported by Sunos are characters (one byte), shorts (tw‘o bytes), integers (four bytes), and
references (four bytes, garbage collected). Streams are type-homogeneous: only onc of the four possible

types of data may appear in a stream.

Streams are accessed by stream references, which are valucs of type either char*, short*, or int* in the C
sense. Sunos provides the equivalent of *s+ + = d for storing a datum d into a stream referenced by s, and
*s+ + for fetching a datum from a strecam referenced by s. (It is not possible however to use *s+ 4+ = d and

*s+ -+ directly due to discontinuitics in the internal representation of strcams and the need to garbage collect

11 DECEMBER 1981

54 . ~ SUN USERS’ GUIDE
streams.)

Stream refcrences have many of the attributes of ordinary iiointers. They may be assigned to variables,
passed as arguments to functions, and returned from functions. In passing them arbund however they may
not be duplicated implicitly, but must be copied explicitly with the Sunos function dupref(s). Thus if the
aésignmcnt s2 = sl is performed and then both sl and s2 arc subsequently used as references to the same
stream, the assignment must be rewritten as s2 = dupref{s1). Pointer arithmetic is not permitted, ndr may

_pointers be comparcd with each other since distinct pointers may point to the same place in a stream.,

Streams are defined entirely independently of Calloc. They do not take advantage of the atomicity catered
for by Calloc but rely on nonblocking methods for accomplishing mutual exclusion at all potential interaction
sites. This permits streams to be used in common by both internal and external processes, reducing the |
variety of communication primitives required in the system. It is possible to perform all interprocess
communication via streams. It is intended that even transactions that might ordinarily Be handled for the sake
of efficiency by block moves be handled by streams for the sake of uniformity of communication. The

efficiency question is intended to be ignored by the user and taken care of at the implementation level (see

section D below).
Stream services fall into two Catg:gories, transactional or data-oriented, and existential or identity-oriented.

In the following, T denotes the type of the stream, and may be any of ¢, é., i, or p, each abbre\'iating one of
the four types. o : '

Transactional Services

putT(d,s) pﬁt datum d in stream s. Stream version of *s+ + = d; getT(s)
get datum from stream s. Strcam version of *s+ + emptyT(s)
return 1 if stream s is empty, c¢lse 0

Existential Services

makestreamT() create a stream, return a reference to its start dupref(r)
make a copy of reference r (a typeless operation) dispose(r)
dispose of reference r (a typcless operation)

Semantically dupref acts as an identity operation, apparently merely returning its argument. Behind the
scenes a reference count is incremented. When dispose is called a reference count is decremented. Reference
counts permit garbage collection of storage associated with streams, permitting the user to ignore the details of

storage management for streams.

11 DIECEMBER 1981

SUNOS - A SMALL OPERATING SYSTEM A 55

7.3. Performance Services ,

Performance services are services that arc semantically redundant, i.e. are alrcady supplied by other
services, but that offer alternative tradeoffs in time and space. The advantage of having performance services
is finer programmer control of program performance. Their disadvantage is thz‘u; program structure may be
obscured by the clutter of performance details interwoven with thosc aSpects of the program that contribute to

its semantic correctness.

The performance services are as follows:

block() " ‘ tempor'an'}y suspend execution of this process

slee »0) o »destmcéive block: d0-d7,a0-a6 not preserved on return
pu tT“to(d, ;) - same; asputT (d,s) ifevaluation of d has no side effects

getTto(v, 5 | gqm'en; to»w;r = getT(s)

block() is semanticaily equivalent to the empty statement. Its effect is to temporarilyvsurrcndcr the
- processor to another process. ‘ Eventually the scheduler will return the processor unharined to the blocked
process. block () is used by wait(p), which is implemented as {while (Ip) block();}.

sleep() is a variant of block() which does not preserve registers d0-d7 or a0-a6. On the Motorola
68000 s1 eep() is unplemented as a system call, trap #2, while block is implemented as push- sleep-pop,

namely) '
movem] #JFFFE‘sp@4;;

trap #2
» moveml #/7FFF sp@+
The two movem1’s together reqmre 290 68000 cycles, or 36 microseconds on an § MHz 68000. Thus context-
switching efficiency may be_lmproved substantially by use of sieep() together with alternative ways to
preserve needed registers such as saving them most of them on entry to a body of ‘code that eﬁcecutes
steep() repeétédiy. For many applications however the load-buffering capability of Sunos should make
context-switching costs négiigible under heavy load. Hence sleep() should be reserved for situations
involving short back- and forth exchanges between processcs; b1ock() will be adequate for more heavily

stream-oricnted tasks.

putTm(d,s) is a variant of putT(d,s) which is expanded in-linc instead of as a subroutine call. Since d
is referred to more than once in the expansion, evaluation of d should not have side effects. For example

putcm(getc(s),t) will not be equivalent to putc(d, s) because getc (s) has the side effect of assigning to s.

11 DECEMBER 1981

56 . . SUN USERS GUIDE

7.4. Performance Characteristics of Present 68000 lmplementatlon

The perforrnance figures of greatest interest are:

o Cost of nonpreemptive (process-initiated) blocking

o Cost of preemptive scheduler-initiated blocking

e Cost of prcemptive interrupt-initiated blocking

o Cost Qf a ‘streani-medi»atcd‘transaction (combined put andv get) ‘

e Frequency of each of the above.

Nonpreemptive block‘ing using block () requires 34 instructions or about 100 microseconds if we assume
2 mxcroseconds per instruction. The non-register-saving s1eep () instruction avonds the two moveml’s that

alone account for 36 microseconds; thus sTeep () costs approximately 60 microseconds.

Frequency of nonpreemptwe blockmg is intended to decrease as system Ioad increases, at least for tasks
- that lend themselves to batching. The use of strcams in interprocess communication will often ensure the
automatlc batchmg of tasks; a process will continue to process data coming from a stream for as long as data is

avallable bIockmg only when the stream becomes empty.

Preemptive blocking is performed by requesting the phy.sician to "retire™ this process. Normally this costs
40 instructions more than blockmg, i.e. 74 instructions or about 180 microseconds. If the process was running
atomlcally then the ovcrhead is ‘increased to that required to single step the process through the atomic
sectxon, approximately-48-i mstrucuons or. 80 microseconds per step.

Frequency of precmptive blockmg is intended to be very low in comparison to the overhead of preempuve
blocking. ThlS motlvates the ch01ce of alo mllhsecond quantum for Calloc, making the 180 microseconds
requlred for preemptlve blockmg negligible. Whether the additional overhead of leaving an atomic section
increases this substantlally on the average depends on the probability of bemg in an atomic section at the time
of preemption. In general this can be assumed to be less than 0.1, and atomic sections can be assumed to be
less than 10 instructions lo‘ng-.‘ Then ﬂ'nc cxpected overhead attributable to atomicity at preemption is at most

0.1*10*0.5*40 = 20 instructions or 40 microseconds (the 0.5 assumes uniform dlsmbutmn of where in the

atomic section prcempnon was requested).

Interrupt-mediated preemption is extremely cheap: essentially the cost of the exception. The external
process saves only those registers it needs immediately, which is the same protocol observed in the C calling

scquence for ordinary subroutine calls, whence should not be counted as an additional overhead.

11 DECEMBER 1981

SUNOS - A SMALL OPERATING SYSTEM : - 57

The cost of réading and writing data in a strcam dcciomposcs into typical and boundary (buffer-
discontinuity) costs. We first give the costs if the efficiency oriented operations are used, assuming the stream
pointers and data are held in registers. Thé typical cost of writing a datum is 4 instructions, w.hile the
boundary cost is 90 instructions. The typical cost of rcading a datum is 2 instructions while the boundary cost
is cstimated at 40 instructions though has not been checked. With buffers holding say 240 data, the average
cost of a write-and-rcad transaction is then 4 + 2 + (90+40)/240, or approximately 6.5 instructions.
Measurements suggest that the cost of a transaction along with a minimal afnoum of computation on the data
being transacted (adding up a stream of chars) requires about 20 microseconds on an § Mhz 68000, which is in

line with the analytic prediction if we allow 7 microseconds for the associated computation.

7.5. Calloc - A CPU Allocator for the Motorola 68000

7.5.1. Overview _

a Calloc, for Cpu ALLOCator, is concerned with allocation of the CPU to "internal” processes, defined as
processes running in user state at interrupt level 0. In standard operating system terminology this would be
called a scheduler. Calloc and its senior sibling process, Maltoc the Map ALLOCator, run in system state at
interrupt level 0. The only other processes are the interrupt driven processes or IDP’s which run in system
state at positive interrupt levels, preempting the cpu according to their level. An IDP is visible only to those
processes Mt}i which it shares memory, which normally will be one or more internal processcs on the distal

end of a stream shared with the IDP. Calloc is entircly unaware of the existence of IDP’s,

- Calloc has a minimal set of duties which require little code to implement and can be easily performed. As
such Calloc should be of interest to operating systems theorists as a tractably small object of study, and to
operating systems implementors as a small, easily implemented, efficient, and cffective component of an

operating systerm.

Calloc is dedicated to maximal autonomy of internal processes. The objective is to minimize duties
performed in system state, thus minimizing the chances of global system failure due to errors committed in
(vulncrable) system state. The autonomy is supported in two ways, one negative and one positive. On the
negative side Calloc forgoes the luxury of écccss to any spacc but its own, thereby reducing the vulnerability
of the system to system-state crrors. More positively, Calloc offers enough services to permit competent user

state processes to assume duties normally assigned to system state processes.

The inaccessibility of memory to Calloc turns out to present no scrious obstacles to the implementation of

Calloc. As it happens none of the scrvices provided by Calloc require access to other spaces. A residual issue

11 DECEMBER 1981

58 : , L SUN USERS’ GUIDE

of accidental map access leading to accidental memory access by Calloc remains an unsolved problem that we

discuss in more detail below.

As a basis for providing services, Calloc recognizes a partitioning of every internal process into what we
shall term the physician-patient pair. .This recognition takes three forms: unlimited patience with "ill”
(exception-causing) patients; support for physicians, limited to the kind of support best offered by a process
running in system state such as Calloc; and a very contemporary intolerance for malpractice manifested as

immediate and unreported termination of an erring physician along with its patient.

This scheme should work well provided only the most trusted software is used for implcmenting the
physician half of each pair. The behavior of Calloc towards physicians and patients is the only mechanism
depended on to encourage programmers to observe thls discipline in wrmng process software. Without. this
discipline debugging should prove most difficult; conversely, with it the ease and cffi iciency of debugging
should advance in step with ad vances in "medical technology."

o 4 :

To appreciate this desxgn decision better it helps to think of physician software as requiring a level of
dependability only a Iitt’le‘less than that of Calloc itself. The reason physicians are less critical is that the
penalty for physician failure, while scemingly very severe, is nevertheless less severe than the penalty for
Calloc failure. A failed physician only leads to the unreported loss of a process, whereas Calloc failure can
cause the unreported loss of the whole system. This also means that an inappropriate choice of physician will

inconvenience only the chooser and not processes running in other spaces.

There arc of course alterﬁativé mothods of debugging physicians that are not supported explicitly by |
Calloc, just as there are methods for debugging Calloc itself. For the most part physicians themselves can be
debugged by running therh as patients. When running as physicians, an alternative mode of dcbugging is to
put the physician in commumcanon with another physician who can at least report the termination of its
partner. '

A dlfferent approach to the physician-patient relation is to make it hierarchical, putting physician
dcbugging on the same level as’ paticnt debugging. The cost is added complexity in Calloc in coping with
such a hicrarchy. Our preference here has been to sacrifice a certain amount of convenicnce in physician

debugging in favor of keeping Calloc simple.

11 DECEMBER 1981

SUNOS - A SMALL OPERATING SYSTEM o 59

7.5.2. Machine Dependencies in Calloc
The initial Calloc design is tailored to the SUN-1, a Motorola-68000-based CPU board. The only fcétures
of this board on which Calloc depends critically and which are not features of essentially every CPU board are V
the 68000’s trace facility, without which the dutics of physicians would‘requirc substantially morc assistance
from Calloc, compromising system robustness; and the SUN-1's per-page protection capability, on which
Calloc depends to protect physicians from their patients and both from Calloc, and to make physiciéns
invisible to their patients. To within these details, the principles of Calloc should be found to be broadly

applicable. |

Ideally Calloc should be the junior sibling to Malloc, in that Calloc should have no say in how memory fs
allocated to processes and shbuld not be able to interfere with Malloc’s duties, in contrast to Malloc’s absolute
freedom. Unforturnately the SUN-1 does not support this level of protection since map access and hence
unrestricted memory access is granted to all systcm state processes, not just to Malloc as we would prefer.
Thus the promised protectioxi of internal process memory from Calloc is only weakly achieved, by not having
any Calloc code that intentionally references the map. Accidental map references remain an unfortunate
possibility that we would hope future hardware would make it easier to avoid. The absence of iterative
cons:ruéLs and address régiéter arithmetic from the Calloc code should help to reduce the likelihood of such
unintentional map accesses. ‘One consolation is that at least Calloc is no worse in this respect than any other

system-stape,séhedulers.
7.5.3. Calloc Dutles | _
Ca]loc attends to‘me,fot'ldsy.ing.
1. Requests for anifriaﬁpn ’(b‘ringing to life) of a given process, that s, giving it a share of the cpu.‘
2. Requests for sleep, that is, tempbrary surrender of the cpu. |
3. Requests fbr terminatién, that is, permanent surrender of the cpu,.

4. Equitable allocation of the processor; at uniform intervals the active process is put to sleep and the
next in turn is awoken (round-robin scheduling).

5. Automatic saving and restoring of pc/sp/cc, the process's program counter, stack pointer, and
condition codes.

6. Error recovery. An erring process is permitted to try to recover on its own. No limit is placed on
the number of errors made. Calloc depends critically on the physician-paticnt dichotomy to avoid
the major problem associated with this degree of latitude, namely vegetating, the perpetual
survival of terminally ill processes.

7. Requests by a physician to run or single step its patient. The physician is at liberty to set

11 DECEMBER 1981

60 |) SUN USERS' GUIDE

breakpoints in the patient, which Calloc supports in a way that makes this invisible to the patient.

7.5.4. Calloc Nonduties , ,
Many dutics normally entrusted to system-state software are not attended to by Calloc, in the interests of

autonomy, flexibility, and cfficiency. Such duties often include the following.

1. Saving and restoring the contents of the cpu other than pc/sp/cc. Calloc assumes that each
internal process will save and restore the contents of the cpu registers that it cares about.

2. Diagnosis, repair, or reporting of sick processes. The process must diagnose and report its own
problems, using its physician component, and heal or terminate itself.

3. Allocation of memory. This is handled at two levels on the SUN-1, as a consequence of details of
its memory structure. At the higher level, SUN-1 memory is structured into possibly overlapping
spaces of varying sizes. Accordingly there exists Calloc’s aforementioned companion Malloc,
which like Calloc runs in system state at interrupt level 0. At a lower level is conventional
memory allocation wrthm a space, which is handled by the user processes themselves

4, Allocatron of the processor to interrupt-driven processes (IDP’s) (introduced at the start of the
overview section).

5. Creation and destruction of processes. Calloc draws a Pinnochio-like distinction between creation
and animation, taking responsibility only for the latter. Process creation and destruction are left to
user processes. The quality of the created process is up to the author of the creating process; in
general the best effects should be obtained by creating processes with highly trusted physicians,
Process destruction entails primarily deallocation of resources, which though it may be handled by
any component of the process is for greatest reliability left to specialist programs runmng in user
state. ' : -

6. Reading or writing of internal process memory. Calloc does not reference internal-process
memory, making it independent of decisions about how system state processes access memory
normally accessed in user state. Although the SUN-1 makes system-state access to user-state
memory as easy as access to system-state memory, future boards may vary this. Calloc is immune
to such variations,

7. Capability management. No global system of capability management is envisaged for SUNOS.
The definition and use of capabilities is intended to be a matter of agreement between consenting
processes. The set of rights and duties of internal processes from Calloc’s point of view provides
an cxample of this. This philosophy is part of the ovcrall dccentralization philosophy of SUNOS

8. Interprocess communication. No global system of interprocess communication is envisaged for
SUNOS. Instead it is expected that a variety of interprocess communication protocols will be

used, one or two of which may come to dominate on account of their combmatlon of general
apphcablhty and high efficiency.

Calloc offers énough services to permit quality care of the patient by its physician, including:

11 DECEMBER 1981

SUNOS - A SMALL OPERATING SYSTEM _ B 3

o Full access by the physician to the state of the patient.
e Protection of the physician from the patient’s illness;
o Invisibility of the physician to the patient;

o A single step facility to help the physician diagnose and/or treat the patient.

Control is passed from the patient ("normal” status) to the physician ("suspended" status) when an crror

occurs.

Physician access to the patient is straightforward for all of the patient except its pc/sp/cc, error state, and
space size. ’fq thain this information a system call to Calloc is provided which returns this information in

five CPU registers. This call also grants the physician read-write access to the patient’s memory.

Protection of the physician from the patient is implemented by allocating a portion of the space to the
physician and denyiﬁg write access to those pages while in normal status. A physician whose writable

memory fits in one page (2K bytes) will require Calloc to access only one map entry for each change of status.

Physiciari ihVisibility is achieved by denying the patient any read access to the space the physician writes in,
ﬂme motivétipn beihg.for the ﬁatient not to see mysterious variations in memory. Seeing or even executing the
‘physician’s code is pennissible provided the code remains fixed. The physician should not use the patient’s
stack in plac»e‘ of its ownv; excépt where it makes arrangements to completely erase all traces of its presence

before returning to normal status.

7.5.5. Requests to Sleep | ‘
A process temporarily hel;i up by lack of input or unavailability of some resource may temporarily
surrender the CPU to Calloc. It does not get it back until all other processes have had a turn. This is

synchronous sleep; as such it may not be necessary to save all the CPU registers.

Where the cpﬁ chaﬁges hands frequently (say every 100 microscconds or lcss), the. affected processes will
arrange to m"’mimize context switching overhead, e.g. by replacing "while (fcondition) {pushstate; sleep;
popstate;}" with "if (!éonditidn) {pushstate; do sleep while (Icondition); popstate;}"” and treating functions
containing "sleep” as though they declared all of d2-d7 and a2-a5 (a trivial mod to the compiler), saving any

given register across the largest block containing the sleep but not containing a reference to that register.

11 DECEMBER 1981

& ‘ SUN USERS' GUIDE

7.5.6. Cleaning Up

The following approach is proposed for ﬂaving physicians clean up. There are three granularities of storag;:
involved: space, stack, and frame. A space is defined by the 68000 board's SID (Space ID) register; spaces are
protected from each other except when they overlap as when sharing for intcrprdccss communication and
related purposes. Stacks are associated with processes; each process has two stacks, one for normal use and a

small one, normally inaccessible, for the physician. Frames are as defined by the C68 compiler (sce section
2.5). ’

Per space: all storage is reclaimed by Malloc when a space is abandoned (contains no further viable
. e .). . _ . ,

Per stack: Each space may contain any number of processes: these are freed by the process’s physician
when the process is terminated for any reason, as are other patient resources known to the physician such as

stream pom'em

Per frame: No fixed schﬂeme is prescribed here; rather each exception Vhandler is expected to understand its
patient’s conventions concerning stack use. A C68ldependent convention will be to use two sources of
informatibn: the add-tb-stéck-pointer instruction produced by the C68 compiler after each call, and the link

instruction at the entry to each funcﬁon. Either of these uniquely determine the number of parameters, and
together they pfovide a coﬂsistency check on each other in the event a6 or the stack has been badly damaged

or a nonstandard calling sequence has been used without telling the exception handler. -

A significant advantage of this approach is that it does not commit itself unbendingly to a particular choice
of calling sequence. New callmg sequence conventions may require rewriting of physicians, but do not aﬁ'ect
calloc itself, " :

7.5.7. The Calloc Process Model
Calloc has a conceptlon of a process appropnate to Calloc’s duties. Calloc dmdcs its notion of the state of

the proccss into data state and control state components.

The data state components are:

e a value for the SID (Space ID) register, determining which region of the membry map the process
has access to;

* pe/sp/cc values (program counter, stack pointer, condition code register) for each of the physician
and the patient;

11 DECEMBER 1981

SUNOS - A SMALL OPERATING SYSTEM _ 8

o the patient’s error status.

The SID register value is determined by Malloc, who may also change it. Calloc uses it only to set the SID
register for the current (running or retiring) process. The SID register maps a virtual address to a map

~ address, which further maps the result to a physical address.

The pc/sp/cc values are used to initialize the cpu on exiting to the process. The patient error status is

reported to the physician on request, along with the patient pc/sp/cc values.

The control state components are:
e activity: one of running, retiring, or sleeping;
e status: normal or suspended.
.+ A running process is one in control of the CPU. A retiring process is one which is attempting to go to sleep.

A sleeping process is one that does not have control of the CPU. A running or retiring process is called

current; there is at most one current process ata time.

A normal process executes the patient when running, while a suspended process exccutes the physician.

When retiring, a process executes the physician whether normal or suspended.

The process state is répresented in the present SUN implementation with the following 32-byte struct in

the C programming language.

typedef struct Procdesc /* process descriptor */
{int *patpc; - /* pat program counter */

int *patsp; /* pat stack pointer */
int *patsb; /* pat stack base */
int *phypc; /* phy program counter */
int *physp: /* phy stack pointer */
int sid; /* space id */
char patcc; /* pat condition code reg */
char phycc; /* phy ditto */
short paterr; /* patient error status */
struct Procdesc *next; /* next process descriptor */

} *procdesc;

The current process is identified with a variable Current of type procdesc. To facilitate removal of a
terminated process the procdesc variable Last identifics the process that was current prior to the present one
(with Last = Current if there is only one process). Last contains no information not deducible less efficiently

from Current.

11 DECEMBER 1981

64 ‘ ‘ ' o SUN USERS’ GUIDE

7.5.8. Control State Transitions
| The behavior of Calloc towards the current process can be reprcseméd as a finite state automaton, the states
being the control states of the process. This automaton has five inputs, namely error, terminate, sleep, run,
and timeout. An error input may be an error exception, a trace exception, or a rcqucs't to be considered to be
in crror. A terminate input is a request to be terminated. A slecp input is a request from lhe process to be put
to sleep. A run input is a request from the physician to transfer process ownership to the patient, cither for

one step or indefinitely. A timeout input is a signal from the timer that this process’s time is up.

The following state transition table covers the case when exactly onc input has arrived. As we care only

about the current process here, the initial states are normal running, suspended running, normal retiring, and

suspended retiring.

INPUT: error terminate sleep run timeout
STATE: - : : : -
norm run. | susp run terminated norm sleep sSusp run norm ret.
susp. run. | terminated terminated susp sleep norm run susp ret.
norm ret. | terminated terminated norm sleep terminated terminated
susp ret. | terminated terminated susp sleep terminated terminated

It is possible for any combination of (i) error, (ii) one of terminate, sleep, or run, zind (iii) timeout to dccur
simultaneously. If error is present, then terminate, sleep, and run requests are ignored, though the request is
stored as part- of the error state of the patient. Otherwise multiple inputs are .processcd as though they had
arrived sequentially in the order given in the table. Thus error and timeout together take a running patient
first to a running physiciah and then to a retiring physician. For the case of slecp with timeout we add the
condition that timeout of a sleeping process has no effect. (Thus a returning patient that gets its sleep request

in just as the timeout arrives survives by the skin of its teeth.)

7.5.9. Calloc Services
We now detail the services provided by Calloc.

Animation The function animate (patpc,patsp,patsba,phypc,physp,si d) requests
Calloc to add to its list a process with the given pc/sp values for patient and physician and
sb for patient, a zero cc for cach, a zero patient crror status, and a control state of slecping
paticnt,

Sleep The function s1eep() requests Calloc to put the requesting process to sleep. When the
process is reawoken later, its cpu registers d0-d7 and a0-a6 may have changed, but the
pc/sp/cc values will be preserved.

Termination The function terminate() requests Calloc to terminate the requesting process. Calloc docs
not consider the issuc of returning the stack and strcams to free storage.

11 DECIEMBER 1981

SUNQS - A SMALL OPERATING SYSTEM ’ 65

Status

Run

Single Step

7.6. The Edit

The physician may use the function status() to extract from Calloc the cntire state of the
paticnt. This information is returned to the physician in registers d4 (pc), d5 (cc,error
status,space size), d6 (sp), and d7 (sb). In addition the physician is granted read and write
access to the patient’s space. This access is revoked on resumption of normal processing.
Use of status() by the paticnt counts as an error

The physician may use the function run() to return the process from suspended to
normal status. Calloc restores only the patient’s pc/sp/cc; it is the physician’s
responsibility to restore the other registers. Calloc also restores the access control to this
space in force at the time of animation of this process.

The physician may use the function s i nglestep() to achieve the same effect as run()
but in 68000 trace state. The ensuing trace exception is treated by Calloc as an error of
type trace and the process is then suspended again. '

-St ring P'fdtocol

Edit-strings are a particular representation of strings designed to support a variety of protocols for

operating on strings. The most general string editing operation, replacement, is supported, but certain

Special-ptxrpose kinds of operations such as stream-read-and-write have particularly efficient implementations

with edit-strings. All references to edit-strings are via ordinary pointers to individual data within a string.

7.6.1. The Edit-String Data Structure |

Storagc is divided; into buffers each of size a power of two, each aligned by its size. Each buffer contains a

header and a body. The headqf is structured into the following fields.

jtypedef struct Bufhead - /* Buffer head definition */
{struct Buffer *next; /* next buffer */
struct Buffer *prev; /* previous buffer, if any */

char size;
char type;

short 11im;
short rlim;

short refco;
} *bufhead;

/* log base 2 of size of buffer */

/* type of data in buffer */

/* left end of data in buffer */

/* right end of data in buffer */

/* number of owners of this buffer */

The exact start and end of data in the body are defined by both delimiters and the 114m/r14m pair. The

last delimiter before the start address marks the start boundary, while the first delimiter following the end

address marks the end boundary.

11 DECEMBER 1981

66 ' - SUN USERS' GUIDE

7.6.2. Reference
All references to edit-strings are via pointers to data within the body of some buffer. This differs from
schemes where a reference is a more complex structure which may include a count of the lemammg items in

the current buffer and the address of a function to call when the count vanishes. \

Data are accessed via poihtcrs in the usué! way. In the case of acceﬁsing é stream the pointer will be
incremented after the access. This may take it out of the data. The test for this is pci‘formed when accessing
rather than when i}ncrementing. The condition of being out of the data is récognized when the pointer points
to a delimiter and the end address given in the buffer header does not lie beyond the pointer. When storing at

the end of an edit-string, as when writing a stream, the writer only nced update rlim if it writes a delimiter,

7.6.3. Locatmg Block Headers

The quesuon arises as to how to locate the start of the buffer given only a pomter into the buffcr body To
this erid all buffers are taken to be of size a power of two, and are aligned on buffer boundarles that is, they |
start at an address which is a mulnple of their length.

When the size of the buffer is known, the buffer header may be located by masking out the low-order bits
of the pointer. In gffect a pointer has two components, a pointer to the start of the buffer and an offset from
that start. Unlike other ways of forming two-element structures, this approach has the benefit that the
structure fonns an ordinary méchine 'ad'dress that can be used as an indircct reference and incremented in the

- usual ways.

When tﬁe size of Lh;: gﬁffer is not known, it may be determined by trying all sizes in decfeasing order ahd
for each, masking out the low-order bits of the pointer as in the casc when the size is known. The largest size
yielding a header which (a)‘i:s within the storage region allocated to this scheme and (b) contains this size in its
size field, is the size of the contéinihg buffer. The correctness of this method depends on the observations that
(a) every address within a buffer yields the buffer header using SOME mask, and (b) every mask_ iarger than

must yield some buffer header.

'l'hc'advantagc‘ of this approach is that processes that know the buffer size in advance can run faster, while
processes that don’t, such as postmortem diagnosers, can still find their way around given only pointers into
buffers.

11 DECEMBER 1981

SUNOS - A SMALL OPERATING SYSTEM 67

7.6.4. Asynchronous Access

The question now arises as to asynchronous reading and writing; can a reader get a consistent picture of a
string while it is being written? In general a certain amount of explicit synchronization of independent
processes may be necded for some kinds of reading and writing. However fc.)r some of the cases we are

particularly concerned about, explicit synchronization can be avoided.

Consider the case of any number of readers reading in either direction in a stream being written only at the
ends (i.e. no inserting other than at the ends, and no deleting). By symmetry it suffices to consider a reader
scanning forwards. A reader fetching a non-delimiter is assured that he is not at the end of the stream.
Fetching a delimiter is more problematical; the delimiter may have been genuine at the time of the fetch, but

may be replaced by some other datum by the writer before the reader fetches the end address.

If the writer has not updated the end address then no serious problem arises; the reader merely has al_i out-
of-date picture. However supposc that between the rcader’s reading the delimiter and checking the end
address that the writer writes a non-delimiter and then the delimiter. The writer will then bring the end

address up to date and the reader will be fooled into believing that the delimiter it read is a datum.

There is an easy éu.re for this problem. The rcader identifying a delimiter as a datum should always refetch
‘that datum and discard the old datum. The second fetch is guaranteed to be correct since all writing is

performed at the end. This method avoids the expense of explicit synchronization.

When the need does arise to synchronize explicitly, the question arises as to how to minimize overhead.
~ System calls to raise intermpt priority or defeat the interrupt mechanisms are unduly expensive; it is
considerably cheaper to rely on shared semaphores when these can be set, tested, and reset with single

instructions.

11 DECEMBER 1981

68 ') ~ SUNUSERS’ GUIDE

References

1. F. Baskett, and A. V. Bechtolscheim. The SUN Workstation: A Hardware Overview. Stanford University
Computer Science Department 1981.

2. F. Baskett, A. V. Bechtolscheim, W. I. Nowicki, and J. K. Scamons. The SUN Workstation: A Terminal
System for the Stanford University Network. Stanford University Computer Science Department 1980.

3. F. Baskett, J.H. Clark, J.L. Hennessy, S.S. Owicki, and B.K. Reid. Research in VLSI systems: Dcsign and
architecture. Tech. Rept. 201, Computer Systems Laboratory, Stanford University, 1981.

4. F. Baskett, J.H. Howard, and J.T. Montague. Task communication in DEMOS. Proceedings of the Sixth
. Symposium on Operating Systems Principles, November, 1977, pp. 23-31. Published as SIGOPS Operaling
Systems Review 11(5).

5. D.R. Boggs, J F. Schoch, E. A. Taft, and R. M. Metcalfe. “Pup: An Internetwork Architecture.” YIEEE
Transactions on Communications 28, 4 (April 1980), 612-624.

6. S.1. Feldman. Make - A program for Maintaining Computer Programs. Part of the Umx Programmer S
gunde Volume 2.

7. R. E. Gorin. Computer Networking at Stanford. Stanford University Computer Science Department
1980. _ ;

8. JL Hennessy Pascal* Tech. Rept. , Computer Systems Laboratory, Stanford Umversxty, 1980
9. G. Kane. 68000 Mzcroprocessor Handbook. Osbourne/McGraw~Hxll, 1981.

10 G. Kane, D. Hawkms afde Leventhal 68000 Assembly Language Programming. Osbourne/McGraw-
Hill, 1981. .

11. K. A, Lantz. Perseus_ Ris?ng. Sfohford University Computer Systems Laboratory 1980.
12. MC68000 Design Module Usér’s Guide. 1979. MEX68KDM(D2).
13. MC68000 I6-bz‘t Microprocessor User’s Manual. 1980. MC68000UM(AD?).

14. William M. Newman and Robert F Sproull. Principles of Interactive Computer Graphics. McGraw-Hill,
1979. :

15. D.M. Ritchie and K. Thompson. "The UNIX time-sharing system.” Bell System Technical Journal 57, 6
(July 1978), 1931-1946.

16. W. Yundt, Chairman. Report of the Sfudy Group on Networking. Stanford Univcféity Center for'
Information Technology January 1981. Perpared for the Task Force on the Future of Computing at Stanford

11 DECEMBER 1981

INDEX

Index
2651 10

6321 9
6840 9
6850 10

7201 10
9513 10

Abort 17,26
ACIA 10,43
Alto 45
As8 7
Ascii 47
Assembler 7

Bout 5,9
Bootstate 24

_Break key 17 »
Breakpoint trap 19, 25,26
Byte order 5, 6,9,20

C 51,13

CLibrary 11

Calling Sequence 13
Calloc 57

Ce68 5,37

Checksum 14

Compiling 5

Console 11,28
Context Register 17,28
Control characters 9

Debugging 39
Design Module 8,9, 10, 37
Diablo 3
Directories 3
Di68 9 o
Down load file format 14

" Down-line loading 9, 21,37

Echoing 28

Edit-Streams 65

Emulator Traps 16,27
Entry point 8

Lthernet 6, 10, 16,17, 19, 20
Example 18

File names §

File transfer programs 47
Frame buffer 9, 16, 20, 24
FTP 47

Getting started 17

Global symbols 7
Graphics 9,31

11 DECEMBER 1981

	000
	001
	002
	003
	004
	005
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	ix

