
esprit project
25257

SCI Europe number: P25257
Deliverable number: D2.2.1a

Contractual date: 30th September, 1998
Work package: 2.2.1

Document version: 2.0
Document status: Complete

Confidentiality: Consortium
Document date: October, 1998

Deliverable

Prototype Tracer

Partner: Trinity College Dublin
Author(s): B.A.Coghlan, M.Manzke, E.Barnstedt, R.Cunniffe, J.Dukes

Editor: B.A.Coghlan

Keywords: SCI, tracer, analyzer

Abstract:

In this document we present the technical manual for the prototype tracer developed within the

project.

Table of contents 2

SCI Europe Deliverable: D2.2.1a Prototype Tracer

Introduction 3

SCI Europe Deliverable: D2.2.1a Prototype Tracer

ESPRIT Project P25257 SCIEurope

Deliverable D 2.2.1a

Prototype Tracer

October 1998

Dr.B.A.Coghlan
Department of Computer Science

Trinity College Dublin
coghlan@cs.tcd.ie

M.Manzke
Department of Computer Science

Trinity College Dublin
michael.manzke@cs.tcd.ie

E.Barnstedt
R.Cunniffe

J.Dukes
Department of Computer Science

Trinity College Dublin

Introduction 4

SCI Europe Deliverable: D2.2.1a Prototype Tracer

Introduction

The definition of Task 2.2.1 is as follows :

Task 2.2.1 Test Tools Development
Market and
User Need

There are no commercially available SCI test tools on the market for the
SCI community today.

Objectives To develop the first generation of tracing and debugging tools for use in
work package 3 Applications.

Approach The tools will be based on needs identified in the Test Requirements
Specification from Task 2.1. There will probably be developed two tools
– one tool able to trace the SCI traffic and either show online or store
the results. This tool will be based as much as possible on present
hardware and software platforms. The other tool will be able to send and
receive SCI traffic according to some traffic profile in order to load
systems with traffic without using real nodes. The prototype tools will
be evaluated during the debugging phase of the Embedded Avionics
System demonstrator in Task 3.3, and the results will be summarised in
a report.

Lead Partner Trinity 24 person months
Other Partners D.E.

SINTEF
4 person months
12 person months

Major
deliverables

D 2.2.1
D 2.2.2
D 2.2.3

Q4
Q6
Q8

Trinity
SINTEF
Trinity

Prototype Tracer/Analyzer
Traffic Generation Tool
Tracer/Analyzer Mk.II

The objective of this document is to present the Technical Manual for the Prototype Tracer.

This represents the hardware and software resources of the Prototype Tracer/Analyzer. The

software for the Prototype Analyzer will be presented in a later document.

The Prototype Tracer is not specifically oriented towards SCI, but instead provides general

purpose deep trace facilities. B-Link traces will be acquired via a probe card supplied by

Dolphin, that attaches to their SCI cards via elastomeric connectors, and breaks out the B-Link

signals to a number of connectors that will accept cables for a HP16500 series logic analyser.

Trinity will design a probe adapter that will attach to these to distribute the B-Link signals to a

multiple of the DT200.1 Deep Trace boards. Pending the probe adapter, the B-Link signals will

be connected directly from the probe card to two DT200.1 boards; this will allow some

experimentation into detailed trigger/trace needs using the trigger/trace facilities of the DT200.1

boards.

Computer Architecture Group
Department of Computer Science
Trinity College Dublin
Ireland

Tel : +353-1-6081765
Fax : +353-1-6772204

Deep Trace DT200.1

Technical Manual

B.A.Coghlan
P.O'Carroll
M.Manzke

E.Barnstedt
R.Cunniffe

J.Dukes

Deep Trace DT200.1

Technical Manual

Introduction

Systems performance analysis involves the collection and analysis of traces obtained from a target
computer system. By presenting views that illustrate the target's behaviour versus time, a designer can
determine how efficiently the target system is operating. These views are traditionally in the form of
histograms, charts or tables of statistics. Trace analysis can reveal many interesting system
characteristics such as where a processor is spending most of its time, how long critical routines take to
execute, how often a cache contains the desired information, how well a cache coherency protocol
performs, whether there is excessive contention for locks, how well the load is balanced among
processors, and so on. If performance bottlenecks can be located, corrective action can hopefully be
taken.

Traditional logic analysers collect traces in real-time, but their capacity is generally limited to the order
of 1to 8K samples. With time this is improving, for example, a new trace module has been introduced
for the Hewlett Packard HP16500A logic analyser - a fully configured system comprising five
HP16542A boards is capable of collecting 1,000,000 x 80bit samples @100MHz. Users cannot write
analysis software for the HP16500A itself, but the contents of the trace memory can be transferred to a
PC, albeit via a relatively slow RS232 or HP-IB interface for analysis.

The DT200.1 Deep Tracer is a modular data collection system designed sp ecifically for gathering very
long state traces for performance analysis of processor and I/O busses. In a minimal configuration the
data collection system consists of two modules, a sampler board which stores the trace and a
preprocessor module to collect data from the target bus. This allows traces to be generated from a
variety of busses by using different preprocessor modules. This document describes the technical
details of the EISA based sampler board DT200.1.

Conceptually the system functions as a very deep FIFO. Data is sampled via the 48 bit serial interface
on the positive edge of a clock and stored in a 12MByte VRAM buffer. The buffer wraps around and
can be read out via the EISA interface without stopping the sample clock. A block diagram of the trace
system is shown below.

DT200.1 Technical Manual

Page 7 28th October, 1998

12 MByte Dual ported Buffer

Trigger/Trace
EISA bus

Tim
estam

p

Test processor or bus

Features

• 2 Million x 48bit samples
12MBytes Dual Ported VRAM

• Max Sample Rate 50MHz on Serial Port
Max data rate 300Mbytes/second.

• Standard EISA interface on Parallel Port
33MByte/sec bursting slave allows data to be read out transparently and asynchronously
without stopping trace. Autoinitialization on power up. Buffer can be mapped anywhere in
EISA address space.

• Real Time Trigger and Trace functions
64k x 12 Trace SRAM gives a minimum of four arbitrary trace ranges

• Expandable in Width and Depth
An interboard connector allows multiple boards to cascaded to increase the sample width, in
multiples of 48bits, up to 192bits wide. It is also possible to interleave boards to increase
buffer depth in multiples of two million. This also increases the maximum sample rate.

• Integral Timestamping
48bit 50MHz timestamp counter plus serial clock synchronizing logic. Interboard connector
allows distributed synchronisation of multiple boards.

• Bidirectional
Can be programmed to output samples synchronously with an external clock.

DT200.1 Technical Manual

Page 8 28th October, 1998

Programming Model

This section contains all the information necessary to write low level code to drive the sampler board.
Sample code and header files are presented later in this document. It is recommended that driver
software uses the code provided or other trusted routines to ensure the integrity of the collected traces.

Register Summary

The hexadecimal addresses of all the programmable registers are shown below. They are all
mapped into Slot Specific EISA I/O space. The actual I/O address is calculated by substituting the
Slot number (0..15) for the upper four bits. Slot number is represented by ‘Z’.

offset mnemonic r/w operation
0xZ000 RESET w Hard Reset of entire Board
0xZ004 ADDRMAP r/w Write EISA Address Map
0xZ008 MODE r/w Mode Control Register
0xZ00C TRIGCONFIG r/w Trigger/Trace Select Reg
0xZ010 TIMERESET w TimeStamp Counter Reset
0xZ014 STOPCOUNT r/w Trigger Row Counter
0xZ018 HEADPTR r/w Head Pointer Counter
0xZ01C OUTPUTENA r/w Output Enables
0xZ020 STATUS r Trace Status
0xZ080 EISAID r EISA ID for Slot initialisation

0xZ000 RESET : Board Reset

Writing any value to this register resets all registers, timestamp counter, EISA interface and
internal state machines. After a system reset or power- UP, the VRAM buffer will not respond until
:

1. the board is RESET by a write to 0xZ000, and then
2. a write is made to any register but the RESET register.

0xZ004 ADDRMAP : EISA Address Map Register

31 24 0

ADDRMAP[31..24]

This register specifies the upper 8 bits of the VRAM buffer address map in EISA memory space. It
must be written before the buffer can be accessed. After a system reset or power- UP, the VRAM
buffer will not respond until first the board is first RESET and then a write is made to any register
but the RESET register.

DT200.1 Technical Manual

Page 9 28th October, 1998

0xZ008 MODE : Mode Control Register
31

SRAMLD

PAUSE

RECORD

WRAP

TIMECFG[1..0]

07

DMAENA

IRQENA

There are 8 mode bits in this register - all are active when non zero. Currently the two most
significant bits are not implemented.

SRAMLD enables the trace SRAM to be read and written. It disables sampling but does not stop
the timestamp counter.

PAUSE stops the sampler. It is buffered on an open collector line which can be connected to other
boards over the inter-board connector. This allows multiple boards to start and stop sampling
together.

RECORD specifies the direction of the serial port. RECORD=1 means the board samples the serial
bus synchronously with the serial clock. RECORD=0 causes the serial buffers to drive the contents
of the sample memory onto the serial bus synchronously to the serial clock. Writing to this bit turns
around the VRAM serial ports and resets the output buffer enables - hence it should be set to its
intended value before the output buffer enables are configured, i.e. immediately after writing
RECORD=1, the timestamp counter outputs will be disabled (but the counter itself is unaffected).
Note that since RECORD=1 either enables either the sample input buffers or the timestamp counter
outputs (depending upon OUTPUTENA[5..0]), the SRAM cannot be accessed while RECORD=1.

TIMECFG[1..0] specifies the divisor for the timestamp counter: 1, 2, 4 or 8.

WRAP causes the board to ingnore the STOPCOUNT counter and continue sampling when it
reaches zero.

DMAENA enables the board to request the host machine to perform DMA on EISA DMA channel
7 when the STOPCOUNT counter reaches zero. Currently, DMAENA is not implemented.

IRQENA causes the board to assert EISA interrupt IRQ12. The interrupt is level triggered so that
multiple boards can share the same interrupt. Currently, IRQENA is not implemented.

DT200.1 Technical Manual

Page 10 28th October, 1998

0xZ00C TRIGCONFIG : Trigger/Trace Channel Configuration

31

TRIGCONFIG[3..0]

 3 01245

TRACE CONTINUOUSLY

TRIGGER IMMEDIATELY

The four least sigificant bits select the four SRAM trigger/trace channels. A logic 0 in
TRIGCONFIG[3..0] selects the channel as a trace and logic 1 selects it as a trigger channel. The
TRACE CONTINOUSLY bit forces acceptance of every sample. The TRIGGER IMMEDIATELY bit
forces the STOPCOUNT to begin counting down immediately.

0xZ010 TIMERESET : Reset TimeStamp Counter

Writing any value to this location resets the timestamp counter. The signal is driven by an open
collector buffer onto the inter-board connector so that multiple boards can be synchronised.

0xZ014 STOPCOUNT : Sample Stop Counter

31 23 15 0

STOPCOUNT[23..15]

This register holds the absolute number of samples to be stored before the the sampling stops. The
buffer stores samples incrementally in blocks of 2048x48 wrapping around to the base address
when it reaches the top of the the buffer. As soon as the SRAM detects a trigger value the stop
counter is enabled. The counter decrements with every second block of 2048 samples stored.
Loading 0x00000000 into this register causes the board to stop immediately after the trigger so
that the trigger value is at the end of the trace. Writing 0x00FF8000 into STOPCOUNT means the
the trigger value will occur at the start of the trace. Bits [31..24] and [14..0] will always read as a
logic 1. If it is possible to atomically update this register, then very long traces may be generated
provided the data can be read out of the EISA interface as fast as it is acquired. Writing to this
register will reset the timestamp counter.

0xZ018 HEADPTR : Head Transfer Pointer

31 23 15 0

HEADPTR[23..15]

This location holds the 24 bit address offset where the next block of 2048 samples will be stored.
Bits [31..24] and [14..0] will always read as a logic 1. Writing to this register will reset the
timestamp counter.

DT200.1 Technical Manual

Page 11 28th October, 1998

0xZ01C OUPUTENA : Serial Buffer Output Enables

31

SBUFENA[5..0]

05

Each of the active bits in this register represents a different byte in the serial port. A logic 1 in
OUTPUTENA[5..0] enables the corresponding byte[5..0] of the sample. Disabling an individual
sample buffer enables the corresponding byte of the timestamp register, if the RECORD mode bit is
set. As a precaution against damaging the buffers this register is reset every time the direction of
the sample buffers is changed by toggling the RECORD bit., i.e. toggling RECORD turns around the
VRAM serial ports and resets the output buffer enables - hence RECORD should be set to its
intended value before the output buffer enables are configured.

0xZ020 STATUS : Trace Status Register

31 15 0

DONE

This read only register indicates whether the STOPCOUNT has reached zero. The DONE bit will be
a logic zero when the STOPCOUNT counter is non-zero, and a logic 1 when the STOPCOUNT
counter reaches zero. Bits [31..16] and [14..0] should always be treated as undefined values.

0xZ080 EISAID : Slot Specific EISA ID Register

This read only register contains the unique EISA ID for the board. This allows the board to be
initialised on power up by the system board from initialisation values stored in the BIOS CMOS
RAM. It also allows the driver software to scan the EISA slot specific I/O addresses to identify
which slots contain trace boards, and therefore at what addresses. Currently this register reads out
a value of 0x01209212. A sample EISA configuration file is presented later in this document.

TimeStamping

There is a 48 bit synchronous timestamp counter which can be enabled byte by byte onto the
sample data stream. OUTPUTENA[5..0] enables byte[5..0] of the counter. The bytes that are not
enabled will count anyway. The cycle time is selected by the MODE[5..4] register bits. The
following table indicates the clock period for each of the combinations:

MODE[5..4] period
00 20nS
01 40nS
10 80nS
11 160nS

DT200.1 Technical Manual

Page 12 28th October, 1998

Sample Buffer Memory Map

The Sample buffer is mapped simply into EISA memory space according to the value of the
ADDRMAP register and the SRAMLD bit in the MODE register. As a precaution, the memory map
of the board is disabled at power up and after a board reset (after a power- UP or a write to
RESET). The SRAMLD bit determines whether the VRAM buffer or the trace SRAM is mapped
into EISA memory space. The two cannot be accessed concurrently. The diagram below illustrates
the memory map.

0xMM0000000

0xMMffffff 0xMMffffff

0xMMf7ffff

0xMMefffff

0xMM0fffff

0xMM07ffff

0xMM000000

SRAM

SRAM
Alias

SRAM
Alias

SRAM
Alias

SRAMLD = 0 SRAMLD = 1

VRAM

Each 48 bit sample is aligned on a 64 bit boundary in memory as shown below:

Sample n+1

Sample n

Sample n-1
Byte Address m-8

31 24 0

Byte 0Byte 1Byte 2Byte3
Byte4Byte 5

Byte Address m

Byte Address m+8

DT200.1 Technical Manual

Page 13 28th October, 1998

DT200.1 Technical Manual

Page 14 28th October, 1998

Trigger/Trace Setup

A simplified schematic of the trigger and trace system is shown below.

16

16

16

64kx4

64kx4

64kx4

a0..a15

d0..d3
d0..d3

d0..d3

a0..a15
a0..a15

R
egister

R
egister

R
egister

48

Sample
Port

LA
TC

H
LA

TC
H

LA
TC

H
LA

TC
H

Trigger/Trace

Essentially, the 48 bit sample data path is broken into three contiguous groups of 16 bits which are
connected to the address lines of three 64kx4 SRAMs. SRAM0 a[15..0] is connected to sample
data sd[15..0], SRAM1 a[15..0] is connected to sd[31..16] and SRAM2 a[15..0] to sd[47..32]. Each
SRAM data line is ANDed with the corresponding data lines from the other two SRAMs and these
products are ORed together to give the trigger or trace result.

A triplet of data bits from each SRAM (e.g. d0 on SRAM0 & SRAM1 & SRAM2) is called a trace
channel and is individually selectable to be a trigger (if trigger value is matched, stop sampling
when STOPCOUNT register reaches zero) or a trace (store sample only if trace value is matched).

Channels are selected as trace or trigger by writing the TRIGCONFIG register. Bits [3..0] of this
register individually select the four trace channels as trigger (if set to one) or trace (if reset to zero).

To read or write the SRAM, first the SRAMLD bit of the MODE register must be set, and the
RECORD bit must be reset. This disables sampling and maps the SRAM into the lower 128k of the
EISA memory address space. Usually PAUSE would also be set. All three SRAMs are read/written
together. SRAM0 data is buffered to EISA D[3..0], SRAM1 to EISA D[7..4] and SRAM2 to EISA
D[11..9].

31 7 3 0

SRAM0 D[3..0]

SRAM1 D[3..0]

SRAM2 D[3..0]

11

By programming the SRAMs with the right values it is possible to trace and/or trigger on multiple
different values and even arbitrary ranges of values.

DT200.1 Technical Manual

Page 15 28th October, 1998

Trace Example 1: Trace/Trigger on a Single Value (D = x)

Suppose the 48 bit value to trace/trigger on is 0x123456789ABC

Choose a trigger/trace channel, say channel #1 (bit zero in each SRAM) :

Write a logic 1 into the SRAMLD and PAUSE bits in the MODE register, and a logic 0 into the
RECORD bit :

(I/O 0xZ008) := (I/O 0xZ008) AND 0xFFFFFFFB
(I/O 0xZ008) := (I/O 0xZ008) OR 0x00000003

Set up the configuration bit for channel #1

(I/O 0xZ00C) := (I/O 0xZ00c) AND 0xFFFFFFFE (Trace)

(I/O 0xZ00C) := (I/O 0xZ00c) OR 0x00000001 (Trigger)

Break the value into three blocks of 16 bits and shift left by 2 to calculate the SRAM address :

0x1234 << 2 = 0x048D0
0x5678 << 2 = 0x259E0
0x9ABC << 2 = 0x26AF0

Write the trigger bitmap into SRAM :

(Mem 0xMMX048D0) := 0xXXXXX100
(Mem 0xMMX259E0) := 0xXXXXX010
(Mem 0xMMX26AF0) := 0xXXXXX001

Trace Example 2: Trace/Trigger on Multiple Values (D = x | y)

There are two options to load multiple values into the SRAM. It is possible to use a different
channel per value but this limits the number of values to four. However if the values happen to
occur in the same 64kSample block. (e.g. the two values 0x12345678DEAD and
0x12345678BEEF occur in the same 64kSample block) they can both be put into the same
channel.

Trace Example 3: WildCarding or “Don’t Care” bits.

Sometimes a trace or trigger channel requires that certain bits be wild cards or “don’t care”. In
these cases it is necessary to program the SRAM such that the data read back is high regardless of
the state of the wildcard bit. In effect all this means is that a one must be written into the SRAM at
the addresses corresponding to the sample data being high and also at the addresses where the
sample data is low. Suppose that in the first example bit five must be wildcarded. The trace value
is thus:

0x123456789A$C where $ == binary 10X1

The procedure is the same as before except two addresses are written into SRAM0 the addresses
0xMMX26AF0 & 0xMMX26A70.

DT200.1 Technical Manual

Page 16 28th October, 1998

When two wildcards occur (in the same 64kSample block), there must be four addresses written,
and with three wildcard bits, eight addresses and so on. To wildcard sixteen bits, all 64k addresses
must be filled with ones in the correct channel.

All updates to the trace SRAM should be ORed in to avoid upsetting the data in different channels.

Trace Example 3: Trace/Trigger on a Range (x = D = y)

There are two cases:

Case1: Range occurs entirely within one 64kSample block

Trigger on range 0x12345678BEEF = Sample = 0x12345678DEAD

Calculate bitmap as before and write bits into SRAM2 & SRAM1. SRAM0 must have a range of
addresses written. The Start and finishing addresses are:

0xBEEF << 2 = 0x2FBBC

0xDEAD << 2 = 0x37AB4

Note that writing 0x001 into these addresses may overwrite the information in SRAM1 & SRAM2
so the value must be ORed in. The following pseudocode illustrates this:

FOR i := 0xbeef to 0xdead DO
BEGIN

temp = Mem(0xMMX00000) + (i<<2));
temp = temp OR 0x001;
Mem(0xMMX00000) + (i<<2)) = temp;

END

As with multiple single values, multiple ranges can be placed in the same channel provided they all
fall within the same block. Ranges that consist of exact multiples of 64kSamples can also fit in one
channel. In this case the lower sixteen bits of the sample data are wildcarded.

Case 2: Range Overlaps a 64kSample boundary:

If the range overlaps a 64kSample boundary the range must be broken into two ranges and each
programmed into a different channel. e.g. the two values 0x12346578ABCD and
0x12345679ABCD specify a range that overlaps one boundary. In this example the range can be
broken into two ranges, viz:

0x12345678ABCD - 0x12345678FFFF

0x123456790000 - 0x12345679ABCD

These ranges will each fit into separate channels as in Case 1 above.

DT200.1 Technical Manual

Page 17 28th October, 1998

Setup Sequences

The interactions between RECORD, SRAMLD and OUTPUTENA[5..0] mean that the various
registers must be written in an order that precludes these interactions.from undoing the effect of
prior writes. As an example, let us consider the sequence of actions needed for starting a trace.

1. Firstly the PAUSE and SRAMLD of the MODE register should be set to a logic 1 and the
RECORD bit reset to a logic 0. PAUSE=1 stops tracing. RECORD=0 disables both the sample
input buffers and the timestamp buffers, which is a necessary condition for accessing the
SRAM with SRAMLD=1.

(I/O 0xZ008) := (I/O 0xZ008) AND 0xFFFFFFFB
(I/O 0xZ008) := (I/O 0xZ008) OR 0x00000003

2. Next the trigger and trace patterns can be preloaded into the SRAM as discussed above.

3. Then the trigger/trace configuration can be written to TRIGCONFIG[5..0].

(I/O 0xZ00C) := 0x0000000X (where X is the desired value)

4. After this, the STOPCOUNT can be written.

(I/O 0xZ014) := 0x00XXX000 (where XXX is the desired value)

5. Then the HEADPTR can be written.

(I/O 0xZ018) := 0x00XXX000 (where XXX is the desired value)

6. At this point the RECORD bit needs to be set, before OUTPUTENA is written to, so that when
the latter is done, it won't be undone by a subsequent toggle of the RECORD bit.

(I/O 0xZ008) := (I/O 0xZ008) OR 0x00000004

7. Now OUTPUTENA[5..0] can be written, to enable the sample input buffers or timestamp
buffers as required.

(I/O 0xZ01C) := 0x0000000X (where X is the desired value)

8. Finally the PAUSE and SRAMLD bits can be reset to allow tracing to begin.

(I/O 0xZ008) := (I/O 0xZ008) AND 0xFFFFFFFC

DMA and Transparent Operation

The EISA interface has been designed as a 33MByte/sec bursting slave that allows data to be read
out transparently and asynchronously without affecting data acquisition. The WRAP bit of the
MODE register causes the board to ingnore the STOPCOUNT counter and continue sampling when
it reaches zero. If this bit is set, then the VRAM buffer wraps around and can be continuously read
out via the EISA interface without stopping the sample clock. If it is possible to atomically update
the STOPCOUNT register, then very long traces may be generated, provided the data can be read
out of the EISA interface, and stored, as fast as it is acquired.

DT200.1 Technical Manual

Page 18 28th October, 1998

The DONE bit of the STATUS register allows a very simple loop to be constructed :

... set up registers, etc.
/* now start tracing to bottom half of VRAM */
(I/O 0xZ008) := (I/O 0xZ008) AND 0xFFFFFFFD (clear PAUSE)
(I/O 0xZ018) := 0x00000000 (HEADPTR <- bottom half of VRAM)
(I/O 0xZ014) := 0x00800000 (STOPCOUNT <- half VRAM size)
while(1)
{
 do
 {
 sleep(1)
 }while !(DONE)
 /* then start tracing to top half of VRAM */
 (I/O 0xZ018) := 0x00800000 (HEADPTR <- top half of VRAM)
 (I/O 0xZ014) := 0x00800000 (STOPCOUNT <- half VRAM size)
 /* and concurrently read and store bottom half of VRAM */
 read_and_store(0x00000000)
 do
 {
 sleep(1)
 }while !(DONE)
 /* go back to tracing to bottom half of VRAM */
 (I/O 0xZ018) := 0x00000000 (HEADPTR <- bottom half of VRAM)
 (I/O 0xZ014) := 0x00800000 (STOPCOUNT <- half VRAM size)
 /* and concurrently read and store top half of VRAM */
 read_and_store(0x00800000)
}

Generally the reading and storing would be done via DMA. The DMAENA bit of the MODE
register enables the board to request the host machine to perform DMA on EISA DMA channel 7
when the STOPCOUNT counter reaches zero - the DMA handler would normally do the starting of
the next acquisition at the same time. Completion of the DMA transfer can be signalled via an
interrupt. The IRQENA bit of the MODE register causes the board to assert EISA interrupt IRQ12.
The interrupt is level triggered so that multiple boards can share the same interrupt.

Currently, however, neither DMAENA nor IRQENA are implemented. Neither are burst transfers
enabled.

Alternatively, the functionality can be provided within a program loop. The Intel 80x86 string copy
instruction is interruptable, allows very long strings to be copied from source to destination, and
issues reads and writes as fast as they can be issued. It does, however, consume processor cycles.
This will seriously affect a single-issue procesor, but is acceptable for multi-issue processors such
as the PentiumPro or Pentium II. Unfortunately the EISA bus is not found on systems that
accomodate the latter two processors.

Note that the TRACE CONTINOUSLY bit of the TRIGCONFIG register is not related to this usage
of the board. This bit, when set, forces acceptance of every sample. Since one of the provisos for
the above is that the data can be read out of the EISA interface, and stored, as fast as it is acquired,
use of the TRACE CONTINOUSLY bit is only likely to exacerbate the difficulty of satisfying this
proviso.

DT200.1 Technical Manual

Page 19 28th October, 1998

Applications Programming Interface (API)

In a Microsoft Windows 95 or NT environment, device access may be implemented via functions
that are loaded when needed from a Dynamic Link Library (DLL), i.e. they are dynamically linked
to the application during execution. The DLL then calls device drivers to perform the I/O. A
generic DLL can be defined that will serve as an API for both Windows 95 and NT environments;
an example is given in the next section. Unfortunately a generic device driver cannot be defined for
both Windows 95 and NT, since their requirements are different. Hence these are separately
discussed further below.

The appropriate API functions for the DT200.1 are :

void reset_board(void); //Reset board
void set_map(unsigned long address); //Writes to ADDRMAP
 // register
unsigned long get_map(void); //Read the current
 // address mapping
void set_mode(unsigned long flags); //Writes to the MODE
 // register
unsigned long get_mode(void); //Read the current mode
void set_trig_config(unsigned long flags); //Write to the trigger
 // config register
unsigned long get_trig_config(void); //Read from the trigger
 // config register
void reset_timestamp(void); //Reset the timestamp
 // counter
void set_stop_count(unsigned long flags); //Write to the
 // STOPCOUNT register
unsigned long get_stop_count(void); //Read from the
 // STOPCOUNT register
void set_head_ptr(unsigned long flags); //Write to the
 // HEADPTR register
unsigned long get_head_ptr(void); //Read from the
 // HEADPTR register
void set_sbuf_output_enas(unsigned long flags); //Write to the
 // OUTPUTENA register
unsigned long get_sbuf_output_enas(void); //Read from the
 // OUTPUTENA register
unsigned long get_trace_status(void); //Read from the
 // STATUS buffer
unsigned long get_EISA_ID(void); //Read from the EISA
 // ID register
void get_EISAID(char *text_ID); //Read from EISA ID
 // register amd decode
void stop_trace(void); //Stop trace
unsigned long *map_RAM(void); //Map VRAM and SRAM
 // into linear memory,
 // return address 0x0
 // on error
void unmap_RAM(void); //Unmap VRAM and SRAM

// read out VRAM or SRAM (start address specified)
// and store it in array:
BOOL store_RAM(unsigned long *array,
 unsigned long start_address_offset,
 unsigned long size_in_bytes);

DT200.1 Technical Manual

Page 20 28th October, 1998

These API functions provide an applications interface suitable for programs written in high level
languages like C or Java, such as the example Java application given further again below. The API
is illustrated in the following four diagrams :

N
am

e:
 se

t_
m

od
e

Pr
ec

on
di

tio
ns

: N
on

e
Po

st
co

nd
iti

on
s:

 N
on

e
Pa

ra
m

et
er

s:
 m

od
e

fla
gs

R
et

ur
n

V
al

ue
: N

on
e

N
am

e:
 g

et
_m

od
e

Pr
ec

on
di

tio
ns

: N
on

e
Po

st
co

nd
iti

on
s:

 N
on

e
Pa

ra
m

et
er

s:
 N

on
e

R
et

ur
n

V
al

ue
: 3

2
bi

t r
eg

is
te

r
va

lu
e

N
am

e:
 se

t_
sb

uf
_o

ut
pu

t_
en

as
Pr

ec
on

di
tio

ns
: N

on
e

Po
st

co
nd

iti
on

s:
 N

on
e

Pa
ra

m
et

er
s:

 o
ut

pu
te

na
 re

gi
st

er

fla
gs

R
et

ur
n

V
al

ue
: N

on
e

N
am

e:
 g

et
_s

bu
f_

ou
tp

ut
_e

na
s

Pr
ec

on
di

tio
ns

: N
on

e
Po

st
co

nd
iti

on
s:

 N
on

e
Pa

ra
m

et
er

s:
 N

on
e

R
et

ur
n

V
al

ue
: 3

2
bi

t r
eg

is
te

r
va

lu
e

IO
S.

V
xD

(I
/O

 in
pu

t f
un

ct
io

n)
IO

S.
V

xD
(I

/O
 o

ut
pu

t f
un

ct
io

n)

A
pp

lic
at

io
n

(o
r a

ny
 o

th
er

 3
2

bi
t f

ro
nt

 e
nd

)

D
T

 2
00

1
D

ee
p

T
ra

ce
 b

oa
rd

V
/S

R
A

M
R

eg
is

te
rs

Le
ge

nd
:

ac
ce

ss
es

 =
ca

lls
 =

de

pe
nd

s o
n

=

N
am

e:
 st

op
_t

ra
ce

Pr
ec

on
di

tio
ns

: (
tra

ce
 ru

nn
in

g)
Po

st
co

nd
iti

on
s:

 N
on

e
Pa

ra
m

et
er

s:
 N

on
e

R
et

ur
n

V
al

ue
: N

on
e

DT200.1 Technical Manual

Page 21 28th October, 1998

N
am

e:
 se

t_
tri

g_
co

nf
ig

Pr
ec

on
di

tio
ns

: N
on

e
Po

st
co

nd
iti

on
s:

 N
on

e
Pa

ra
m

et
er

s:
 tr

ig
. c

on
fig

. f
la

gs
R

et
ur

n
V

al
ue

: N
on

e

N
am

e:
 g

et
_t

rig
_c

on
fig

Pr
ec

on
di

tio
ns

: N
on

e
Po

st
co

nd
iti

on
s:

 N
on

e
Pa

ra
m

et
er

s:
 N

on
e

R
et

ur
n

V
al

ue
: 3

2
bi

t r
eg

is
te

r v
al

ue

N
am

e:
 se

t_
st

op
_c

ou
nt

Pr
ec

on
di

tio
ns

: N
on

e
Po

st
co

nd
iti

on
s:

 N
on

e
Pa

ra
m

et
er

s:
 st

op
co

un
t r

eg
is

te
r f

la
gs

R
et

ur
n

V
al

ue
: N

on
e

N
am

e:
 g

et
_s

to
p_

co
un

t
Pr

ec
on

di
tio

ns
: N

on
e

Po
st

co
nd

iti
on

s:
 N

on
e

Pa
ra

m
et

er
s:

 N
on

e
R

et
ur

n
V

al
ue

: 3
2

bi
t r

eg
is

te
r v

al
ue

IO
S.

V
xD

(I
/O

 in
pu

t f
un

ct
io

n)
IO

S.
V

xD
(I

/O
 o

ut
pu

t f
un

ct
io

n)

A
pp

lic
at

io
n

(o
r a

ny
 o

th
er

 3
2

bi
t f

ro
nt

 e
nd

)

D
T

 2
00

1
D

ee
p

T
ra

ce
 b

oa
rd

V
/S

R
A

M
R

eg
is

te
rs

A
PI

 2
 L

eg
en

d:
ac

ce
ss

es
 =

ca
lls

 =

de
pe

nd
s o

n
=

DT200.1 Technical Manual

Page 22 28th October, 1998

A
pp

lic
at

io
n

(o
r a

ny
 o

th
er

 3
2

bi
t f

ro
nt

 e
nd

)

D
T

 2
00

1
D

ee
p

T
ra

ce
 b

oa
rd

V
/S

R
A

M
R

eg
is

te
rs

A
PI

 3
 L

eg
en

d:
ac

ce
ss

es
 =

ca
lls

 =

de
pe

nd
s o

n
=

IO
S.

V
xD

(I
/O

 in
pu

t f
un

ct
io

n)
IO

S.
V

xD
(I

/O
 o

ut
pu

t f
un

ct
io

n)

N
am

e:
 g

et
_t

ra
ce

_s
ta

tu
s

Pr
ec

on
di

tio
ns

: N
on

e
Po

st
co

nd
iti

on
s:

 N
on

e
Pa

ra
m

et
er

s:
 N

on
e

R
et

ur
n

V
al

ue
: 3

2
bi

t s
ta

tu
s b

uf
fe

r
va

lu
e

N
am

e:
 se

t_
he

ad
_p

tr
Pr

ec
on

di
tio

ns
: N

on
e

Po
st

co
nd

iti
on

s:
 N

on
e

Pa
ra

m
et

er
s:

 h
ea

dp
tr

re
gi

st
er

 fl
ag

s
R

et
ur

n
V

al
ue

: N
on

e

N
am

e:
 g

et
_h

ea
d_

pt
r

Pr
ec

on
di

tio
ns

: N
on

e
Po

st
co

nd
iti

on
s:

 N
on

e
Pa

ra
m

et
er

s:
 N

on
e

R
et

ur
n

V
al

ue
: 3

2
bi

t r
eg

is
te

r v
al

ue

N
am

e:
 re

se
t_

bo
ar

d
Pr

ec
on

di
tio

ns
: N

on
e

Po
st

co
nd

iti
on

s:
 N

on
e

Pa
ra

m
et

er
s:

 N
on

e
R

et
ur

n
V

al
ue

: N
on

e

N
am

e:
 re

se
t_

tim
es

ta
m

p
Pr

ec
on

di
tio

ns
: N

on
e

Po
st

co
nd

iti
on

s:
 N

on
e

Pa
ra

m
et

er
s:

 N
on

e
R

et
ur

n
V

al
ue

: N
on

e

DT200.1 Technical Manual

Page 23 28th October, 1998

N
am

e:
 g

et
_R

A
M

Pr
ec

on
di

tio
ns

: R
A

M
 m

ap
pe

d
in

to
 li

ne
ar

 a
dd

re
ss

 sp
ac

e
Po

st
co

nd
iti

on
s:

 N
on

e
Pa

ra
m

et
er

s:
 li

ne
ar

 a
dd

re
ss

 o
f b

as
e

of
 R

A
M

, 3
2

bi
t a

rr
ay

 to
 st

or
e

co

nt
en

ts
,

of
fs

et
 in

to
 th

e
V

/S
R

A
M

, s
iz

e
in

 b
yt

es
 to

 b
e

re
ad

R

et
ur

n
V

al
ue

: i
nt

eg
er

 v
al

ue
 0

 if
 fa

il

N
am

e:
 u

nm
ap

_R
A

M
Pr

ec
on

di
tio

ns
: R

A
M

 m
ap

pe
d

in
to

 li
ne

ar

ad
dr

es
s s

pa
ce

Po
st

co
nd

iti
on

s:
 N

on
e

Pa
ra

m
et

er
s:

 N
on

e
R

et
ur

n
V

al
ue

: i
nt

eg
er

 v
al

ue
 0

 if
 fa

il

N
am

e:
 m

ap
_R

A
M

Pr
ec

on
di

tio
ns

: a
dd

re
ss

 m
ap

 re
gi

st
er

 se
t

Po
st

co
nd

iti
on

s:
 fr

ee
 m

ap
pe

d
m

em
 p

ag
es

Pa
ra

m
et

er
s:

 N
on

e
R

et
ur

n
V

al
ue

: p
oi

nt
er

 to
 3

2
bi

t l
in

ea
r m

em
 lo

ca
tio

n
(m

ap
pe

d
to

 li
ne

ar
 a

dd
re

ss
 0

h
if

fa
il)

A
pp

lic
at

io
n

(o
r a

ny
 o

th
er

 3
2

bi
t f

ro
nt

 e
nd

)

D
T

M
ap

01
.V

xD
M

ap
D

ev
ic

e
fu

nc
tio

n
(c

al
le

d
th

ro
ug

h
D

ev
ic

eI
O

C
on

tro
l)

D
T

M
ap

01
.V

xD
U

nM
ap

D
ev

ic
e

fu
nc

tio
n

(c
al

le
d

th
ro

ug
h

D
ev

ic
eI

O
C

on
tro

l)

D
T

 2
00

1
D

ee
p

T
ra

ce
 b

oa
rd

V
/S

R
A

M
R

eg
is

te
rs

A
PI

 4
 L

eg
en

d:
ac

ce
ss

es
 =

ca
lls

 =

de
pe

nd
s o

n
=

Se
t_

m
ap

 fu
nc

tio
n

G
et

_m
ap

 fu
nc

tio
n

DT200.1 Technical Manual

Page 24 28th October, 1998

N
am

e:
 g

et
_E

IS
A

ID
Pr

ec
on

di
tio

ns
: N

on
e

Po
st

co
nd

iti
on

s:
 N

on
e

Pa
ra

m
et

er
s:

 e
m

pt
y

st
rin

g
R

et
ur

n
V

al
ue

: d
ec

od
ed

 ID
 in

 st
rin

g

N
am

e:
 g

et
_m

ap
Pr

ec
on

di
tio

ns
: N

on
e

Po
st

co
nd

iti
on

s:
 N

on
e

Pa
ra

m
et

er
s:

 N
on

e
R

et
ur

n
V

al
ue

: p
hy

si
ca

l a
dd

re
ss

N
am

e:
 se

t_
m

ap
Pr

ec
on

di
tio

ns
: N

on
e

Po
st

co
nd

iti
on

s:
 N

on
e

Pa
ra

m
et

er
s:

 p
hy

si
ca

l a
dd

re
ss

R
et

ur
n

V
al

ue
: N

on
e

A
pp

lic
at

io
n

(o
r a

ny
 o

th
er

 3
2

bi
t f

ro
nt

 e
nd

)

D
T

 2
00

1
D

ee
p

T
ra

ce
 b

oa
rd

V
/S

R
A

M
R

eg
is

te
rs

A
PI

 5
 L

eg
en

d:
ac

ce
ss

es
 =

ca
lls

 =

de
pe

nd
s o

n
=

IO
S.

V
xD

(I
/O

 in
pu

t f
un

ct
io

n)
IO

S.
V

xD
(I

/O
 o

ut
pu

t f
un

ct
io

n)

N
am

e:
 g

et
_E

IS
A

_I
D

Pr
ec

on
di

tio
ns

: N
on

e
Po

st
co

nd
iti

on
s:

 N
on

e
Pa

ra
m

et
er

s:
 N

on
e

R
et

ur
n

V
al

ue
: 3

2
bi

t r
eg

is
te

r v
al

ue

DT200.1 Technical Manual

Page 25 28th October, 1998

Generic Dynamic Link Library (DLL)

A generic DLL definition file MapDev.h for the DT200.1 is as follows :

// MAPDEV.h - include file for VxD MAPDEV
// Copyright (c) 1996 Vireo Software, Inc.

#ifndef NotVxD

#include <vtoolsc.h>

#define MAPDEV_Major 1
#define MAPDEV_Minor 0
#define MAPDEV_DeviceID UNDEFINED_DEVICE_ID
#define MAPDEV_Init_Order UNDEFINED_INIT_ORDER

#define LPVOID PVOID

#endif

// This is the request structure that applications use
// to request services from the MAPDEV VxD.

typedef struct _MapDevRequest
{

DWORD mdr_ServiceID; // supplied by caller
LPVOID mdr_PhysicalAddress; // supplied by caller
DWORD mdr_SizeInBytes; // supplied by caller
LPVOID mdr_LinearAddress; // returned by VxD
WORD mdr_Selector; // returned if 16-bit caller
WORD mdr_Status; // MDR_xxxx code below

} MAPDEVREQUEST, *PMAPDEVREQUEST;

#define MDR_SERVICE_MAP CTL_CODE(FILE_DEVICE_UNKNOWN, 1,
 METHOD_NEITHER, FILE_ANY_ACCESS)
#define MDR_SERVICE_UNMAP CTL_CODE(FILE_DEVICE_UNKNOWN, 2,
 METHOD_NEITHER, FILE_ANY_ACCESS)

#define MDR_STATUS_SUCCESS 1
#define MDR_STATUS_ERROR 0

The associated C++ source file MapDev.cpp for the DLL is :

#include <windows.h>
#include <winioctl.h>
#include <conio.h>
#include <memory.h>
#define NotVxD
#include "DT2001.h"
#include "DTMap01.h"

/*
// DLL Entry Point disabled since not used
// Note: The DLL entry point functoin is disables at the
// moment because Visual Basic doesn't seem to be
// able to call it; (no loadlib function provided).

DT200.1 Technical Manual

Page 26 28th October, 1998

BOOL WINAPI DllEntryPoint (HINSTANCE hDLL,
 DWORD dwReason,
 LPVOID Reserved)
{

BOOL Success = TRUE;

switch (dwReason)
{

case DLL_PROCESS_ATTACH:
{

//reset_board();
//set_map(PHY_ADDR);//set physical address of VRAM/SRAM
//map_RAM();//set linear address of VRAM/SRAM
break;

}
case DLL_PROCESS_DETACH:
{

//unmap_RAM();
//reset_board();
break;

}
case DLL_THREAD_ATTACH: break;
case DLL_THREAD_DETACH: break;

}
return Success;

}
*/

//Global Declarations:
HANDLE hDevice; //handle for VxD

//resets board
__declspec(dllexport) void __stdcall
 reset_board(void)
{

_outpd(BASE_ADDR | REG_RESET, ANYVALUE);
}

//Writes to ADDRMAP register
// input: is physical address the VRAM/SRAM is to appear at
__declspec(dllexport) void __stdcall
 set_map(unsigned long address)
{

_outpd(BASE_ADDR | REG_ADDRMAP, address);
}

//Read the current physical address mapping
__declspec(dllexport) unsigned long __stdcall
 get_map(void)
{

return (_inpd(BASE_ADDR | REG_ADDRMAP) & 0xFF000000);
}

//Writes to the MODE register
__declspec(dllexport) void __stdcall
 set_mode(unsigned long flags)
{

_outp(BASE_ADDR | REG_MODE, (int)flags);
}

//Read the current mode

DT200.1 Technical Manual

Page 27 28th October, 1998

__declspec(dllexport) unsigned long __stdcall
 get_mode(void)
{

return (((unsigned long) _inp(BASE_ADDR | REG_MODE)) &
 0x00000 0FF);

}

//Write to the trigger config register
__declspec(dllexport) void __stdcall
 set_trig_config(unsigned long flags)
{

_outp(BASE_ADDR | REG_TRIGCONFIG, (int)flags);
}

//Read from the trigger config register
__declspec(dllexport) unsigned long __stdcall
 get_trig_config(void)
{

return (((unsigned long) _inp(BASE_ADDR | REG_TRIGCONFIG)) &
 0x0000003F);

}

//Reset the timestamp counter
__declspec(dllexport) void __stdcall
 reset_timestamp(void)
{

_outpd(BASE_ADDR | REG_TIMERESET, ANYVALUE);
}

//Write to the STOPCOUNT register
__declspec(dllexport) void __stdcall
 set_stop_count(unsigned long flags)
{

_outpd(BASE_ADDR | REG_STOPCOUNT, flags);
}

//Read from the STOPCOUNT register
__declspec(dllexport) unsigned long __stdcall
 get_stop_count(void)
{

return (_inpd(BASE_ADDR | REG_STOPCOUNT) & 0x00FF8000);
}

//Write to the HEADPTR register
__declspec(dllexport) void __stdcall
 set_head_ptr(long int head_ptr)
{

_outpd(BASE_ADDR | REG_HEADPTR, head_ptr);
}

//Read from the HEADPTR register
__declspec(dllexport) unsigned long __stdcall
 get_head_ptr(void)
{

return (_inpd(BASE_ADDR | REG_HEADPTR) & 0x00FF8000);
}

//Write to the OUTPUTENA register
__declspec(dllexport) void __stdcall
 set_sbuf_output_enas(unsigned long flags)
{

DT200.1 Technical Manual

Page 28 28th October, 1998

_outp(BASE_ADDR | REG_OUTPUTENA, (int)flags);
}

//Read from the OUTPUTENA register
__declspec(dllexport) unsigned long __stdcall
 get_sbuf_output_enas(void)
{

return (((unsigned long)_inp(BASE_ADDR | REG_OUTPUTENA)) &
 0x0000003F);

}

//Read from the STATUS buffer
__declspec(dllexport) unsigned long __stdcall
 get_trace_status(void)
{

return (_inpd(BASE_ADDR | REG_STATUS) & 0x00008000);
}

//Read from the EISA ID register
__declspec(dllexport) unsigned long __stdcall
 get_EISA_ID(void)
{

return _inpd(BASE_ADDR | REG_EISAID);
}

//Read from EISA ID register amd decode string
// input: pointer to a char array (min 7 chars long)
__declspec(dllexport) unsigned long __stdcall
 get_EISAID(char *text_ID)
{

unsigned int chars;
unsigned int digits;
unsigned long reg = _inpd(BASE_ADDR | REG_EISAID);
chars = reg;
digits = reg >> 16;

text_ID[0] = (char) ((chars & 0x007C) >> 2) + 0x40;
text_ID[1] = (char) (((chars & 0x0003) << 3) |

 ((chars & 0xE000) >> 13))+ 0x40;
text_ID[2] = (char) ((chars & 0x1F00) >> 8) + 0x40;
text_ID[3] = (char) ((digits & 0x00F0) >> 4) + '0';
text_ID[4] = (char) ((digits & 0x000F) >> 0) + '0';
text_ID[5] = (char) ((digits & 0xF000) >> 12) + '0';
text_ID[6] = (char) ((digits & 0x0F00) >> 8) + '0';
text_ID[7] = 0;
return 1;

}

//Stop trace
__declspec(dllexport) void __stdcall
 stop_trace(void)
{

set_mode(PAUSE);
}

//Map VRAM and SRAM into linear memory, returns a pointer
// to base (32bit)
__declspec(dllexport) unsigned long __stdcall
 map_RAM(void)
{

DWORD cbBytesReturned;//count of bytes returned from VxD

DT200.1 Technical Manual

Page 29 28th October, 1998

MAPDEVREQUEST req; //VxD request structure
PVOID inBuf[1]; //buffer for DevIOCrtl pointer
 // to req structure

const PCHAR VxDName = "\\\\.\\DTMAP01.VXD";
const PCHAR VxDNameAlreadyLoaded = "\\\\.\\DTMAP01";

hDevice = CreateFile(VxDName, 0,0,0,
 CREATE_NEW, FILE_FLAG_DELETE_ON_CLOSE, 0);
if (hDevice == INVALID_HANDLE_VALUE)

hDevice = CreateFile(VxDNameAlreadyLoaded, 0,0,0,
 CREATE_NEW, FILE_FLAG_DELETE_ON_CLOSE, 0);
if (hDevice == INVALID_HANDLE_VALUE)

return (unsigned long) GetLastError();//error!
else
{

//set up request structure:
req.mdr_ServiceID = MDR_SERVICE_MAP;
req.mdr_PhysicalAddress = (PVOID) get_map();
req.mdr_SizeInBytes = VRAM_SIZE;
inBuf[0] = &req;

//call Win32 API Message DeviceIOControl:
if(! DeviceIoControl(hDevice, MDR_SERVICE_MAP, inBuf,
 sizeof(PVOID), NULL, 0,
 &cbBytesReturned, NULL))

return 0;
else

return (unsigned long) req.mdr_LinearAddress;//Success!
}

}

//Unmap VRAM and SRAM
//uses the VxD, frees the linear address space
__declspec (dllexport) int __stdcall
 unmap_RAM(void)
{

DWORD cbBytesReturned; //count of bytes returned from VxD
MAPDEVREQUEST req; //VxD request structure
PVOID inBuf[1];
const PCHAR VxDName = "\\\\.\\DTMAP01.VXD";
const PCHAR VxDNameAlreadyLoaded = "\\\\.\\DTMAP01";
if (hDevice == INVALID_HANDLE_VALUE)

hDevice = CreateFile(VxDNameAlreadyLoaded, 0,0,0,
 CREATE_NEW, FILE_FLAG_DELETE_ON_CLOSE, 0);

if (hDevice == INVALID_HANDLE_VALUE)
{

return 0;//error! can't get a handle on VxD
}
else
{

//set up request structure:
req.mdr_ServiceID = MDR_SERVICE_UNMAP;
req.mdr_PhysicalAddress = (void *) get_map();
req.mdr_SizeInBytes = VRAM_SIZE;
inBuf[0]=&req;
//call Win32 API Message DeviceIOControl:
if (! DeviceIoControl(hDevice, MDR_SERVICE_UNMAP, inBuf,
 sizeof(PVOID), NULL, 0,
 &cbBytesReturned, NULL))

DT200.1 Technical Manual

Page 30 28th October, 1998

{
return 0;//error! call to VxD failed

}
else
{

return 1; //success!
}

}
}

//read out SRAM or VRAM and store in array
//input: array of 32bit storage locations, offset address
// into the VRAM/SRAM and the #bytes to read out
//output: TURE if success, FALSE if fail
__declspec(dllexport) int __stdcall
 get_RAM(PBYTE Map_Address,
 unsigned long *array,
 unsigned long start_address_offset,
 unsigned long size_in_bytes)
{

int success = TRUE;
//boudary checking:
if (get_mode() & SRAMLD)
{

//access SRAM
if ((start_address_offset + size_in_bytes) > SRAM_SIZE)

success = FALSE;
}
else
{

//access VRAM
if ((start_address_offset + size_in_bytes) > VRAM_SIZE)

success = FALSE;
else

memcpy(array,Map_Address + start_address_offset,
 size_in_bytes);//read out RAM and store in array

}
return success;

}

An appropriate compiler description file MapDev.dsp would be :

Microsoft Developer Studio Project File - Name="DT2001"
 - Package Owner=<4>
Microsoft Developer Studio Generated Build File, Format
 Version 5.00
** DO NOT EDIT **

TARGTYPE "Win32 (x86) Dynamic-Link Library" 0x0102

CFG=DT2001 - Win32 Debug
!MESSAGE This is not a valid makefile. To build this project
!MESSAGE using NMAKE, use the Export Makefile command and run :
!MESSAGE
!MESSAGE NMAKE /f "DT2001.MAK".
!MESSAGE
!MESSAGE You can specify a configuration when running NMAKE
!MESSAGE by defining the macro CFG on the command line.

DT200.1 Technical Manual

Page 31 28th October, 1998

!MESSAGE For example:
!MESSAGE
!MESSAGE NMAKE /f "DT2001.MAK" CFG="DT2001 - Win32 Debug"
!MESSAGE
!MESSAGE Possible choices for configuration are:
!MESSAGE
!MESSAGE "DT2001 - Win32 Release"
!MESSAGE (based on "Win32 (x86) Dynamic-Link Library")
!MESSAGE "DT2001 - Win32 Debug"
!MESSAGE (based on "Win32 (x86) Dynamic-Link Library")
!MESSAGE

Begin Project
PROP Scc_ProjName ""
PROP Scc_LocalPath ""
CPP=cl.exe
MTL=midl.exe
RSC=rc.exe

!IF "$(CFG)" == "DT2001 - Win32 Release"

PROP BASE Use_MFC 0
PROP BASE Use_Debug_Libraries 0
PROP BASE Output_Dir "Release"
PROP BASE Intermediate_Dir "Release"
PROP BASE Target_Dir ""
PROP Use_MFC 0
PROP Use_Debug_Libraries 0
PROP Output_Dir "Release"
PROP Intermediate_Dir "Release"
PROP Target_Dir ""
ADD BASE CPP /nologo /MT /W3 /GX /O2 /D "WIN32" /D "NDEBUG" /D
 "_WINDOWS" /YX /FD /c
ADD CPP /nologo /MT /W3 /GX /O2 /D "WIN32" /D "NDEBUG" /D
 "_WINDOWS" /YX /FD /c
ADD BASE MTL /nologo /D "NDEBUG" /mktyplib203 /o NUL /win32
ADD MTL /nologo /D "NDEBUG" /mktyplib203 /o NUL /win32
ADD BASE RSC /l 0x1809 /d "NDEBUG"
ADD RSC /l 0x1809 /d "NDEBUG"
BSC32=bscmake.exe
ADD BASE BSC32 /nologo
ADD BSC32 /nologo
LINK32=link.exe
ADD BASE LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib
 comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib
 uuid.lib odbc32.lib odbccp32.lib /nologo /subsystem:windows
 /dll /machine:I386
ADD LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib
 comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib
 uuid.lib odbc32.lib odbccp32.lib /nologo /subsystem:windows
 /dll /machine:I386

!ELSEIF "$(CFG)" == "DT2001 - Win32 Debug"

PROP BASE Use_MFC 0
PROP BASE Use_Debug_Libraries 1
PROP BASE Output_Dir "Debug"
PROP BASE Intermediate_Dir "Debug"
PROP BASE Target_Dir ""
PROP Use_MFC 0
PROP Use_Debug_Libraries 1

DT200.1 Technical Manual

Page 32 28th October, 1998

PROP Output_Dir "Debug"
PROP Intermediate_Dir "Debug"
PROP Target_Dir ""
ADD BASE CPP /nologo /MTd /W3 /Gm /GX /Zi /Od /D "WIN32" /D
 "_DEBUG" /D "_WINDOWS" /YX /FD /c
ADD CPP /nologo /MTd /W3 /Gm /GX /Zi /Od /D "WIN32" /D
 "_DEBUG" /D "_WINDOWS" /YX /FD /c
ADD BASE MTL /nologo /D "_DEBUG" /mktyplib203 /o NUL /win32
ADD MTL /nologo /D "_DEBUG" /mktyplib203 /o NUL /win32
ADD BASE RSC /l 0x1809 /d "_DEBUG"
ADD RSC /l 0x1809 /d "_DEBUG"
BSC32=bscmake.exe
ADD BASE BSC32 /nologo
ADD BSC32 /nologo
LINK32=link.exe
ADD BASE LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib
 comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib
 uuid.lib odbc32.lib odbccp32.lib /nologo /subsystem:windows
 /dll /debug /machine:I386 /pdbtype:sept
ADD LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib
 comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib
 uuid.lib odbc32.lib odbccp32.lib /nologo /subsystem:windows
 /dll /debug /machine:I386 /pdbtype:sept

!ENDIF

Begin Target

Name "DT2001 - Win32 Release"
Name "DT2001 - Win32 Debug"
Begin Source File

SOURCE=.\DT2001.cpp
End Source File
Begin Source File

SOURCE=.\dt2001.def
End Source File
Begin Source File

SOURCE=.\DT2001.h
End Source File
End Target
End Project

DT200.1 Technical Manual

Page 33 28th October, 1998

Windows 95 Virtual Device Driver (VxD)

Since the board uses both I/O for the registers and normal memory space for the VRAM and
SRAM, the most efficient implementation in a Microsoft Windows 95 is to use the IOS.VxD driver
for the I/O space and write a custom driver for the memory mapping for the VRAM and SRAM.
The memory map driver is called DTMap01.VxD. The IOS.VxD driver comes with Windows 95
and is located in the SYSTEM folder of a Windows 95 system. It is also sensible to use the Win32
API to program the driver since it allows easy porting of the driver to Windows NT, as well as
being the fastest and most reliable API for Microsoft products. The Win32 API uses control
messages to access VxDs, in particular DeviceIOControl.. The driver is derived from an
example found in the VToolsD programming package (Vireo Software Inc.). This is called
MapDev.VxD and is located in the Examples folder of the VToolsD installation.

 A sample definition file DTMap01.h would be :

// DTMAP01.h - include file for VxD DTMap01

#ifndef NotVxD

#include <vtoolsc.h>

#define MAPDEV_Major 1
#define MAPDEV_Minor 0
#define MAPDEV_DeviceID UNDEFINED_DEVICE_ID
#define MAPDEV_Init_Order UNDEFINED_INIT_ORDER

#define LPVOID PVOID

#endif

// This is the request structure that applications use
// to request services from the MAPDEV VxD.

typedef struct _MapDevRequest
{

DWORD mdr_ServiceID; // supplied by caller
LPVOID mdr_PhysicalAddress; // supplied by caller
DWORD mdr_SizeInBytes; // supplied by caller
LPVOID mdr_LinearAddress; // returned by VxD
WORD mdr_Selector; // returned if 16-bit caller
WORD mdr_Status; // MDR_xxxx code below

} MAPDEVREQUEST, *PMAPDEVREQUEST;

#define MDR_SERVICE_MAP CTL_CODE(FILE_DEVICE_UNKNOWN, 1,
 METHOD_NEITHER, FILE_ANY_ACCESS)
#define MDR_SERVICE_UNMAP CTL_CODE(FILE_DEVICE_UNKNOWN, 2,
 METHOD_NEITHER, FILE_ANY_ACCESS)

#define MDR_STATUS_SUCCESS 1
#define MDR_STATUS_ERROR 0

DT200.1 Technical Manual

Page 34 28th October, 1998

The associated C source file DTMap01.c for the VxD is :

//Deep Trace VxD driver for Windows95
//Erich Barnstedt

//VERSION V1.0

#define PAGENUM(p) (((ULONG)(p)) >> 12)
#define PAGEOFF(p) (((ULONG)(p)) & 0xFFF)
#define PAGEBASE(p) (((ULONG)(p)) & ~0xFFF)
#define _NPAGES_(p, k) ((PAGENUM((char*)p+(k-1))
 - PAGENUM(p)) + 1)

#define DEVICE_MAIN
#include "dtmap01.h"
#undef DEVICE_MAIN

//Create device descriptor block (DDB):
Declare_Virtual_Device(MAPDEV)

//Handle "DeviceIOControl" control message:
DefineControlHandler(W32_DEVICEIOCONTROL, OnW32Deviceiocontrol);

//Control dispatcher:
BOOL __cdecl ControlDispatcher(

DWORD dwControlMessage,
DWORD EBX,
DWORD EDX,
DWORD ESI,
DWORD EDI,
DWORD ECX)

{
START_CONTROL_DISPATCH

ON_W32_DEVICEIOCONTROL(OnW32Deviceiocontrol);
END_CONTROL_DISPATCH

return TRUE;
}

// Device Mapping Function:
PVOID MapDevice(PVOID PhysAddress, DWORD SizeInBytes)
{

PVOID Linear;

//calc number of mem pages required:
ULONG nPages = _NPAGES_(PhysAddress, SizeInBytes);

//set aside linear mem space:
Linear = PageReserve(PR_PRIVATE,nPages,PR_FIXED);

//do physical to linear translation (map into user space):
PageCommitPhys(PAGENUM(Linear),nPages,PAGENUM(PhysAddress),
 PC_INCR | PC_USER |PC_WRITEABLE);

return (PVOID) ((ULONG)Linear+PAGEOFF(PhysAddress));
}

// Device Unmapping Function:
// Input: Base of linear memory block
// Output: None
VOID UnmapDevice(PVOID LinearAddress)

DT200.1 Technical Manual

Page 35 28th October, 1998

{
//free linear memory:
PageFree((MEMHANDLE)PAGEBASE(LinearAddress),0);

}

// W32_DEVICEIOCONTROL Handler for Win32 Applications:
// Input: The dioc_InBuf field of the parameter structure
// contains a pointer to the request structure
// Output: Fields of the request structure are updated
// according to the request.
DWORD OnW32Deviceiocontrol(PIOCTLPARAMS p)
{

PMAPDEVREQUEST pReq;

switch (p->dioc_IOCtlCode)
{
case DIOC_OPEN:
case DIOC_CLOSEHANDLE:

break;
//map request:
case MDR_SERVICE_MAP:

pReq = *(PMAPDEVREQUEST*)p->dioc_InBuf;
pReq->mdr_LinearAddress =
 MapDevice(pReq->mdr_PhysicalAddress,
 pReq->mdr_SizeInBytes);
if (pReq->mdr_LinearAddress == NULL)

pReq->mdr_Status = MDR_STATUS_ERROR;
else

pReq->mdr_Status = MDR_STATUS_SUCCESS;

break;
//unmap request:
case MDR_SERVICE_UNMAP:

pReq = *(PMAPDEVREQUEST*)p->dioc_InBuf;
UnmapDevice(pReq->mdr_LinearAddress);
pReq->mdr_Status = MDR_STATUS_SUCCESS;
break;

default:
return ERROR_INVALID_FUNCTION;

}

return DEVIOCTL_NOERROR;
}

An appropriate makefile DTMap01.mak needs to invoke special tools from the VxD development
environment :

DTMAP01.mak - makefile for VxD DTMap01

DEVICENAME = DTMAP01
DYNAMIC = 1
FRAMEWORK = C
DEBUG = 1
OBJECTS = DTMap01.OBJ

!include $(VTOOLSD)\include\vtoolsd.mak
!include $(VTOOLSD)\include\vxdtarg.mak

DTMap01.OBJ: DTMap01.c DTMap01.h

DT200.1 Technical Manual

Page 36 28th October, 1998

Windows NT Device Driver

An example Windows NT device driver is shown below. The definition file mapmem.h is as
follows :

#define FILE_DEVICE_MAPMEM 0x00008000
#define MAPMEM_IOCTL_INDEX 0x800

// Define our own private IOCTL
#define MDR_SERVICE_MAP CTL_CODE(FILE_DEVICE_MAPMEM,
 MAPMEM_IOCTL_INDEX,
 METHOD_BUFFERED,
 FILE_ANY_ACCESS)
#define MDR_SERVICE_UNMAP CTL_CODE(FILE_DEVICE_MAPMEM,
 MAPMEM_IOCTL_INDEX+1,
 METHOD_BUFFERED,
 FILE_ANY_ACCESS)

// Our user mode app will pass an initialized structure like
// this down to the kernel mode driver

typedef struct _MapDevRequest
{
 int mdr_Service_ID;

unsigned long *mdr_PhysicalAddress;
int mdr_SizeInBytes;
unsigned long *mdr_LinearAddress;
unsigned char mdr_Selector;
unsigned char mdr_Status;

} MAPDEVREQUEST, *PMAPDEVREQUEST;

#define MDR_STATUS_SUCCESS 1
#define MDR_STAUTS_ERROR 0
#define MAPDEV_Major 1
#define MAPDEV_Minor 0
#define MAPDEV_DeviceID UNDEFINED_DEVICE_ID
#define MAPDEV_Init_Order UNDEFINED_INIT_ORDER

The C source file mapmem.c is :

/*++
 A simple driver sample which shows how to map physical memory
 into a user-mode process's adrress space using the
 Zw*MapViewOfSection APIs.

Environment:

 kernel mode only

Notes:

 For the sake of simplicity this sample does not attempt to
 recognize resource conflicts with other drivers/devices.
 A real-world driver would call IoReportResource usage to
 determine whether or not the resource is available, and if
 so, register the resource under it's name.

DT200.1 Technical Manual

Page 37 28th October, 1998

--*/

#include "ntddk.h"
#include "mapmem.h"
#include "stdarg.h"

//function prototypes:
NTSTATUS MapMemDispatch(IN PDEVICE_OBJECT DeviceObject,
 IN PIRP Irp);
VOID MapMemUnload(IN PDRIVER_OBJECT DriverObject);
NTSTATUS MapMemMapTheMemory(IN PDEVICE_OBJECT DeviceObject,
 IN OUT PVOID ioBuffer,
 IN ULONG inputBufferLength,
 IN ULONG outputBufferLength);

#if DBG
#define MapMemKdPrint(arg) DbgPrint arg
#else
#define MapMemKdPrint(arg)
#endif

//no changes made in this routine:
NTSTATUS DriverEntry(IN PDRIVER_OBJECT DriverObject,
 IN PUNICODE_STRING RegistryPath)
/*
Routine Description: Installable driver initialization entry
 point. This entry point is called directly by the I/O system.
 Arguments:
 DriverObject - pointer to the driver object
 RegistryPath - pointer to a unicode string representing the
 path to driver-specific key in the registry
 Return Value:
 STATUS_SUCCESS if successful,
 STATUS_UNSUCCESSFUL otherwise
*/
{

PDEVICE_OBJECT deviceObject = NULL;
NTSTATUS ntStatus;
WCHAR deviceNameBuffer[] = L"\\Device\\MapMem";
UNICODE_STRING deviceNameUnicodeString;
WCHAR deviceLinkBuffer[] = L"\\DosDe vices\\MAPMEM";
UNICODE_STRING deviceLinkUnicodeString;

MapMemKdPrint (("MAPMEM.SYS: entering DriverEntry\n"));

// Create an EXCLUSIVE device object (only 1 thread at a time
// can make requests to this device)
RtlInitUnicodeString (&deviceNameUnico deString,
 deviceNameBuffer);
ntStatus = IoCreateDevice(DriverObject, 0,
 &deviceNameUnicodeString,
 FILE_DEVICE_MAPMEM, 0, TRUE,
 &deviceObject);

if (NT_SUCCESS(ntStatus))
{

// Create dispatch points for device control, create
// and close.
DriverObject->MajorFunction[IRP_MJ_CREATE] =

 MapMemDispatch;
DriverObject->MajorFunction[IRP_MJ_CLOSE] =

DT200.1 Technical Manual

Page 38 28th October, 1998

 MapMemDispatch;
DriverObject->MajorFunction[IRP_MJ_DEVICE_CONTROL] =

 MapMemDispatch;
DriverObject->DriverUnload = MapMemUnload;

// Create a symbolic link, e.g. a name that a Win32 app can
// specify to open the device
RtlInitUnicodeString(&deviceLinkUnicodeString,

deviceLinkBuffer);

ntStatus = IoCreateSymbolicLink (&deviceLinkUnicodeString,
 &deviceNameUnicodeString);

if (!NT_SUCCESS(ntStatus))
{

// Symbolic link creation failed- note this & then
// delete the device object (it's useless if a Win32
// app can't get at it).
MapMemKdPrint(("MAPMEM.SYS: IoCreateSymbolicLink
 failed\n"));
IoDeleteDevice (deviceObject);

}
}

 else
{

MapMemKdPrint (("MAPMEM.SYS: IoCreateDevice failed\n"));
}
return ntStatus;

}

//no changes made, works as of 7/7/98 (tested from Control Panel)
NTSTATUS MapMemDispatch(IN PDEVICE_OBJECT DeviceObject,
 IN PIRP Irp)
/*
Routine Description: Process the IRPs sent to this device.
 Arguments:
 DeviceObject - pointer to a device object
 Irp - pointer to an I/O Request Packet
Return Value:
 STATUS_SUCCESS if successful,
 STATUS_UNSUCCESSFUL otherwise
*/
{

PIO_STACK_LOCATION irpStack;
PVOID ioBuffer;
ULONG inputBufferLength;
ULONG outputBufferLength;
ULONG ioControlCode;
NTSTATUS ntStatus;

// Init to default settings- we only expect 1 type of
// IOCTL to roll through here, all others an error.
Irp->IoStatus.Status = STATUS_SUCCESS;
Irp->IoStatus.Information = 0;

// Get a pointer to the current location in the Irp. This is
// where the function codes and parameters are located.
irpStack = IoGetCurrentIrpStackLocation(Irp);

// Get the pointer to the input/output buffer and it's length
ioBuffer = Irp->AssociatedIrp.SystemBuffer;

DT200.1 Technical Manual

Page 39 28th October, 1998

inputBufferLength =
 irpStack->Parameters.DeviceIoContro l.InputBufferLength;
outputBufferLength =
 irpStack->Parameters.DeviceIoControl.OutputBufferLength;

switch (irpStack->MajorFunction)
{
case IRP_MJ_CREATE:

MapMemKdPrint (("MAPMEM.SYS: IRP_MJ_CREATE\n"));
break;

case IRP_MJ_CLOSE:
MapMemKdPrint (("MAPMEM.SYS: IRP_MJ_CLOSE\n"));
break;

case IRP_MJ_DEVICE_CONTROL:
ioControlCode =

 irpStack->Parameters.DeviceIoControl.IoControlCode;
switch (ioControlCode)
{
case MDR_SERVICE_MAP:

Irp->IoStatus.Status = MapMemMapTheMe mory (DeviceObject,
 ioBuffer, inputBufferLength, outputBufferLength);
if (NT_SUCCESS(Irp->IoStatus.Status))
{

// Success! Set the following to sizeof(PVOID) to
// indicate we're passing valid data back.
Irp->IoStatus.Information = sizeof(PVOID);
MapMemKdPrint (("MAPMEM.SYS: memory successfully
 mapped\n"));

}
else
{

Irp->IoStatus.Status = STATUS_INVALID_PARAMETER;
MapMemKdPrint (("MAPMEM.SYS: memory map failed
 :(\n"));

}
break;

case MDR_SERVICE_UNMAP:
if (inputBufferLength >= sizeof(PVOID))
{

Irp->IoStatus.Status =
 ZwUnmapViewOfSection ((HANDLE) -1,
 *((PVOID *) ioBuffer));
MapMemKdPrint (("MAPMEM.SYS: memory successfully
 unmapped\n"));

}
else
{

Irp->IoStatus.Status = STATUS_INSUFFICIENT_RESOURCES;
MapMemKdPrint (("MAPMEM.SYS: ZwUnmapViewOfSection
 failed\n"));

}
break;

default:
MapMemKdPrint (("MAPMEM.SYS: unknown
 IRP_MJ_DEVICE_CONTROL\n"));
Irp->IoStatus.Status = STATUS_INVALID_PARAMETER;
break;

DT200.1 Technical Manual

Page 40 28th October, 1998

}
break;

}
// DON'T get cute and try to use the status field of
// the irp in the return status. That IRP IS GONE as
// soon as you call IoCompleteRequest.
ntStatus = Irp->IoStatus.Status;
IoCompleteRequest(Irp, IO_NO_INCREMENT);

// We never have pending operation so always return the
// status code.
return ntStatus;

}

//no changes made, works as of 7/7/98 (tested from Control Panel)
VOID MapMemUnload(IN PDRIVER_OBJECT DriverObject)
/*
Routine Description: Just delete the associated device & return.
 Arguments:
 DriverObject - pointer to a driver object
 Return Value:
 None
*/
{

WCHAR deviceLinkBuffer[] = L"\\DosDevices\\MAPMEM";
UNICODE_STRING deviceLinkUnicodeString;

// Free any resources
//??????

// Delete the symbolic link
RtlInitUnicodeString (&deviceLinkUnicodeString,
 deviceLinkBuffer);
IoDeleteSymbolicLink (&deviceLinkUnicodeString);

// Delete the device object
MapMemKdPrint (("MAPMEM.SYS: unloading\n"));
IoDeleteDevice (DriverObject->DeviceObject);

}

NTSTATUS MapMemMapTheMemory(IN PDEVICE_OBJECT DeviceObject,
 IN OUT PVOID IoBuffer,
 IN ULONG InputBufferLength,
 IN ULONG OutputBufferLength)
/*
Routine Description:
 Given a physical address, maps this address into a user
 mode process's address space
Arguments:
 DeviceObject - pointer to a device object
 IoBuffer - pointer to the I/O buffer
 InputBufferLength - input buffer length
 OutputBufferLength - output buffer length
Return Value:
 STATUS_SUCCESS if sucessful, otherwise
 STATUS_UNSUCCESSFUL,
 STATUS_INSUFFICIENT_RESOURCES,
 (other STATUS_* as returned by kernel APIs)

DT200.1 Technical Manual

Page 41 28th October, 1998

*/
{

//PPHYSICAL_MEMORY_INFO ppmi =
// (PPHYSICAL_MEMORY_INFO) IoBuffer;
PMAPDEVREQUEST pmdr = (PMAPDEVREQUEST) IoBuffer;
INTERFACE_TYPE interfaceType;
ULONG busNumber;
PHYSICAL_ADDRESS physicalAddress;
ULONG length;
UNICODE_STRING physicalMemoryUnicodeString;
OBJECT_ATTRIBUTES objectAttributes;

 HANDLE physicalMemoryHandle = NULL;
PVOID PhysicalMemorySection = NULL;
ULONG inIoSpace, inIoSpace2;
NTSTATUS ntStatus;
PHYSICAL_ADDRESS physicalAddressBase;
PHYSICAL_ADDRESS physicalAddressEnd;
PHYSICAL_ADDRESS viewBase;
PHYSICAL_ADDRESS mappedLength;
BOOLEAN translateBaseAddress;
BOOLEAN translateEndAddress;
PVOID virtualAddress;

if ((InputBufferLength < sizeof (MAPDEVREQUEST)) ||
(OutputBufferLength < sizeof (PVOID)))

{
MapMemKdPrint (("MAPMEM.SYS: Insufficient input or output
 buffer\n"));
ntStatus = STATUS_INSUFFICIENT_RESOURCES;
goto done;

}

interfaceType = 2; //EISA only
busNumber = 0; //MAY have to switch to 1 on Niestein!
physicalAddress.HighPart= (LONG) 0x00000000;
physicalAddress.LowPart = (LONG) pmdr->mdr_PhysicalAddress;
inIoSpace = inIoSpace2 = 0;
length = pmdr->mdr_SizeInBytes;

// Get a pointer to physical memory...
// - Create the name
// - Initialize the data to find the object
// - Open a handle to the oject and check the status
// - Get a pointer to the object
// - Free the handle

RtlInitUnicodeString (&physicalMemoryUnicodeString,
 L"\\Device\\PhysicalMemory");
InitializeObjectAttributes (&objectAttributes,
 &physicalMemoryUnicodeString,
 OBJ_CASE_INSENSITIVE,
 (HANDLE) NULL,
 (PSECURITY_DESCRIPTOR) NULL);
ntStatus = ZwOpenSection (&physicalMemoryHandle,
 SECTION_ALL_ACCESS,
 &objectAttributes);
if (!NT_SUCCESS(ntStatus))
{

MapMemKdPrint (("MAPMEM.SYS: ZwOpenSection failed\n"));
goto done;

}

DT200.1 Technical Manual

Page 42 28th October, 1998

ntStatus = ObReferenceObjectByHandle (physicalMemoryHandle,
 SECTION_ALL_ACCESS,
 (POBJECT_TYPE) NULL,
 KernelMode,
 &PhysicalMem orySection,

(POBJECT_HANDLE_INFORMATION) NULL);
if (!NT_SUCCESS(ntStatus))
{

MapMemKdPrint (("MAPMEM.SYS: ObReferenceObjectByHandle
 failed\n"));
goto close_handle;

}

// Initialize the physical addresses that will be translated
physicalAddressEnd = RtlLargeIntegerAdd (physicalAddress,

RtlConvertUlongToLargeInteger(length));

// Translate the physical addresses.
translateBaseAddress = HalTranslateBusAddress
 (interfaceType,
 busNumber,
 physicalAddress,
 &inIoSpace,
 &physicalAddressBase);

 translateEndAddress = HalTranslateBusAddress
 (interfaceType,
 busNumber,
 physicalAddressEnd,
 &inIoSpace2,
 &physicalAddressEnd);

if (!(translateBaseAddress && translateEndAddress))
{

MapMemKdPrint (("MAPMEM.SYS: HalTranslatephysicalAddress
 failed\n"));
ntStatus = STATUS_UNSUCCESSFUL;
goto close_handle;

}
// Calculate the length of the memory to be mapped
mappedLength = RtlLargeIntegerSubtract (physicalAddressEnd,
 physicalAddressBase);

// If the mappedlength is zero, somthing very weird happened
// in the HAL since the Length was checked against zero.

if (mappedLength.LowPart == 0)
{

MapMemKdPrint (("MAPMEM.SYS: mappedLength.LowPart == 0\n"));
ntStatus = STATUS_UNSUCCESSFUL;
goto close_handle;

}
length = mappedLength.LowPart;

// If the address is in io space, just return the address,
// otherwise go through the mapping me chanism
if (inIoSpace) // will never be called in our implementation
 // since we never map I/O space!
{

DT200.1 Technical Manual

Page 43 28th October, 1998

*((PVOID *) IoBuffer) = (PVOID) physicalAddressBase.LowPart;
}
else
{

// initialize view base that will receive the physical
// mapped address after the MapViewOfSection call.
viewBase = physicalAddressBase;

// Let ZwMapViewOfSection pick an address
virtualAddress = NULL;

// Map the section
ntStatus = ZwMapViewOfSection (physicalMemoryHandle,
 (HANDLE) -1,
 &virtualAddress,
 0L,
 length,
 &viewBase,
 &length,
 ViewShare,
 0,
 PAGE_READWRITE | PAGE_NOCACHE);

if (!NT_SUCCESS(ntStatus))
{

MapMemKdPrint (("MAPMEM.SYS: ZwMapViewOfSection
 failed\n"));
goto close_handle;

}

// Mapping the section above rounded the physical address
// down to the nearest 64 K boundary. Now return a virtual
// address that sits where we want by adding in the offset
// from the beginning of the section.
(ULONG) virtualAddress +=
 (ULONG) physicalAddressBase.LowPart -
 (ULONG) viewBase.LowPart;
pmdr->mdr_LinearAddress = (ULONG *) virtualAddress;
//return the IoBuffer with the message structure in it:
*((PVOID *) IoBuffer) = virtualAddres s;

}
ntStatus = STATUS_SUCCESS;

close_handle:
ZwClose (physicalMemoryHandle);

done:
return ntStatus;

}

The driver must have an associated registry entry file mapmem.reg, such as :

REGEDIT4

[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\MAPMEM]
"Type"=dword:00000001
"Start"=dword:00000003
"Group"="Extended base"
"ErrorControl"=dword:00000001

DT200.1 Technical Manual

Page 44 28th October, 1998

For further information see :

1. Microsoft Windows NT 4.0 Driver Developer Kit online help files.

2. Microsoft Win32 Software Developer Kit online help files.

3. "The Windows NT Kernel-Mode Device Driver Cook Book, featuring Visual C++" by
Ruediger R. Asche, found on the MSDN Library CD Version January 1997

4. "Writing Windows NT Kernel-Mode Drivers in C++" by Ruediger R. Asche found on the
MSDN Library CD Version January 1997

DT200.1 Technical Manual

Page 45 28th October, 1998

Applications Software

An example of a software application is described below. This is designed to present the following
tracer control panel. This application demonstrates how to control the DT200.1 via a windowed
graphical user interface (GUI) that calls the API functions described above, and is very useful for
testing and debugging.

The design specifications allow the user to :

(a) Read from and write to registers
(b) Read from VRAM
(c) Read from and write to SRAM
(d) Perform various board test procedures (including repeated stress testing)
(e) Save board configurations, test procedures and trigger information
(f) Save the VRAM contents to a file
(g) Analyse VRAM data to check board function ality and log results to a file

The interface consists of three main parts, a register window, a VRAM listing window and an
SRAM listing window.

The register window displays the contents of all of the registers. The address map, stop count, head
pointer and ID registers are displayed as test boxes containing hexadecimal data. The rest of the
registers are displayed as check boxes indicating individual bit values. The time divisor is
displayed in a drop down list with possible values of 20, 40, 80 and 160 ns.

In the VRAM listing window, the contents of a range of VRAM addresses can be displayed in a
VRAM list box by entering the start and end addresses in text boxes and clicking on an Update

DT200.1 Technical Manual

Page 46 28th October, 1998

button. For example, entering hexadecimal 0 in the From box and hexadecimal 1000 in the To box
will display the contents of the VRAM from address 0 to 1000 in the list box, one longword per
row.

The SRAM window works in the same way.

When the program is started the board is reset, the address map register is set to the default value
and the Deep Trace memory is mapped to a linear address to make it accessible by the program.

The control panel shown above is actually produced by a stand-alone Visual Basic (Version 5.0)
application. Visual Basic programs are comprised of many small files that make them difficult to
describe. Consequently an equivalent Java program is presented below. This software generates
nearly identical results.

DT200.1 Control Panel Software using Java

This program, DTApp, is a stand-alone Java application with a user interface and the ability to
control the DT200.1 Deep Trace Board through the dt2001.dll library. It is designed so that it
can be used as a development platform for JNI (Java Native Interface) and JDBC (Java Database
Connectivity).

At the top level the application consists of a Window with a card panel and a panel to control the
cards. Each card consists of a number of panels implemented as separate classes. For example,
there is a class for the Address Register panel. This allows the user interface code and the register
control code to be kept in the same place. Thus by simply removing this class and the two lines
which instantiate it, all address register functionality can be removed entirely from the application.
This includes JNI code for the address register. This organization makes it easier to understand the
code, as well as allowing the program to be changed very quickly.

At the uppermost level, the DTControlWindow class serves as a container for all of the other
objects. It extends the Frame class to implement a window for the application. It also contains the
main() entry point function for the application. A CardLayout manager is used to arrange the
components (a panel for controlling the display of the cards and a panel for each card). There is no
trace board functionality implemented at this level.

The ControlPanel class implements one of the cards contained in the DTControlWindow. It
uses a GridBagLayout to arrange the DT200.1 register panels and a button bar. The
ControlPanel handles events passed up from the button bar. This gives the button bar control of
the registers.

There is a register panel class for each DT200.1 register. Each of these classes is able to make
calls to the DLL functions which control the board using JNI. This means that each register panel
exists as a component that can be removed and placed in new applications. It may be possible to
alter these components to make their display optional. This would allow an application with higher
level functionality to use the components but hide them from the user.

The DataPanel is a container for objects that deal with the trace data. The only such object at the
moment is a DatabasePanel.

The DBControlPanel implements database connectivity using a JDBC-ODBC bridge. It has
three member functions: a constructor, a function that stores a range of the Deep Trace VRAM in

DT200.1 Technical Manual

Page 47 28th October, 1998

a database and a function that closes the database connection (see the section Database
Connectivity for more information).

The ButtonPanel class implements the button bar used in the ControlPanel class. All of the
button events are passed up to the parent class.

Java Native Interface (JNI)

The Java Native Interface (JNI) provides a method of using Java code together with native code
(e.g. a DLL written in C++). It is possible to perform two-way communication between Java code
and native code but here we are only interested in calling functions in the DT2001j.dll library1.

Native code libraries for use in Java Applications/Applets can be created by following a multi-step
process :

1. Write the Java program. Declare any native methods in the classes where they are used. In a
static code segment, make a call to the loadLibrary() function. This loads the native
library into the Java class and maps the native method declaration to its implementation. For
example2 :

//
// AddressMapPanel
//
class AddressMapPanel extends Panel {

// [JNI] Native (DLL) method declaration
public native void setmap(int value);
public native int getmap();

static {
System.loadLibrary("DT2001J");

}
...

2. Compile the Java code written in the previous step :

> javac “DTControlWindow.java”

3. Create the header file for the native library. This will be used later to write the code for the
native library. Use the javah program with the –jni argument :

> javah –jni “DTControlWindow.class”

If the Java source file contained more than one class with native declarations, then multiple
header files will be produced, one for each class. To make life easier, all of the header files
can be merged into one. To do this, take one of the header files and copy all of the function
prototypes from the other files into this one, and then perhaps give it a name that makes more

1 The DT2001j.dll library is a version of the DT2001.dll library with support for JNI. It allows the DT200.1

trace board to be controlled from the Java application. When this document was written, not all of the
functionality implemented in DT2001.dll had been transferred to the JNI version (DT2001j.dll).

2 The loadLibrary() method appends (or prefixes) extensions to the library name in a system dependant
way. For example, in a Windows95 environment, the entension .dll would be appended to DT2001j to
give DT2001j.DLL. The user should not append this extension.

DT200.1 Technical Manual

Page 48 28th October, 1998

sense3. Make sure to leave the pre-processor instructions in the header file (the comment
about not altering the file can be ignored!). The function prototypes can be altered later if
required.

4. Write the native method implementation using the function prototypes created in Step 3.
Remember to include the jni.h header file4.

5. Compile the native source code to create the shared library.

Java arrays and strings take a different format to arrays in C and C++. This means that arrays and
strings passed from a Java program to a native method cannot be manipulated directly. The jni.h
library includes some functions that allow native methods to use Java arrays and strings but this
requires some extra code to be written. Refer to the Sun documentation on JNI.

Database Connectivity

JDBC5 provides a standard API for the development of database applications in Java. A single
Java application written using JDBC can be used to control different types of database, e.g.
Sybase, Oracle, etc..

To use JDBC, a DBMS driver is required for each type of database accessed from the program.
For the purposes of the DT200.1 Java application, a JDBC-ODBC bridge (category 1 driver) is
used. This driver is distributed with the JDBC package from Sun. To set up basic database
connectivity on a local machine :

1. Load the JDBC-ODBC bridge driver.
2. Find the driver to process the URL.
3. Create a property list with the information required to connect to the database.
4. Connect to the driver.
5. Execute the SQL query.

The following code segment illustrates the above procedure :

//
// Simple Database Connectivity
//
// Instantiate this class from another method
//
class DBControl {

String url; // Store the URL provided
Connection con;

public DBControl(String DBName) {

url = DBName;

3 Try to avoid underscore characters when naming native methods in the Java code. The javah program

creates new names by prefixing some information to the identifier and using underscores. If underscores are
also used in the original method declaration, the native function names will become harder to follow.

4 The path containing the jni.h header file may need to be added to the include path of the compiler used to
compile the .dll file.

5 Microsoft Visual J++ does not support JNI. As a result of this, there is also no support for JDBC. JDBC is
the Sun API that gives Java Applications/Applets database functionality.

DT200.1 Technical Manual

Page 49 28th October, 1998

try {
// Load the JDBC-ODBC bridge driver
Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

// Find the driver to process the URL
Driver jdbcDriver = DriverManager.getDriver(url);

// Create and set up the property list with the
// correct security information
Properties propertyList = new Properties();
propertyList.put("user", "dtuser");
propertyList.put("password", "dtpassword");

// This can be used to provide verbose logging
DriverManager.setLogStream(System.out);

// Connect to the driver
con = DriverManager.getConnection(url, propertyList);

}
catch (SQLException ex) {

System.out.println("Exception while trying to connect");
while (ex != null) {

// The following information is essential for
// finding errors
System.out.println("SQLState: " + ex.getSQLState());
System.out.println("Message: " + ex.getMessage());
System.out.println("Vendor: " + ex.getErrorCode());
System.out.println("URL: " + url);
ex = ex.getNextException();
System.out.println("");

}
}
catch (java.lang.Exception ex) {

ex.printStackTrace();
}

}

// Try to store some sample data in the database.
// The test database should have six integer fields per record.
public void storeData() {

try {
// Create a statement
Statement pstmt = con.createStatement();

// Execute a SQL statement
// Use executeQuery for queries and executeUpdate
// for altering the database (executeQuery expects
// a ResultSet to be returned)
pstmt.executeUpdate("INSERT INTO TraceBoardData
 VALUES (10,20,30,40,50,60)");

}
catch (SQLException ex) {

System.out.println("Exception while executing query");
while (ex != null) {

System.out.println("SQLState: " + ex.getSQLState());
System.out.println("Message: " + ex.ge tMessage());
System.out.println("Vendor: " + ex.getErrorCode());
ex = ex.getNextException();
System.out.println("");

}

DT200.1 Technical Manual

Page 50 28th October, 1998

}
}

}

This example uses Statement objects to execute SQL statements. Every SQL statement passed to
the DBMS must undergo certain procedures before it is executed. This causes undesirable delays.
A Prepared Statement is similar to a Statement but it is pre-compiled using value
placeholders that can be filled in later. This allows multiple statements, which differ only in the
values passed to the database, to be executed very quickly.

However, this method is still not particularly fast. One alternative may be to buffer data in a large
temporary file as it is being traced and add this data to the database at a later stage. Another
possibility is BLOBs – Binary Large OBjects6. The entire trace data from a single DT200.1
(12MB) could be stored as a single record in a database using a binary stream (see the Java
documentation).

In the code given below, the database consists of five 16bit integer fields per record, called
Board1Counter, Board1Data1, Board1Data2, Board2Data1 and Board2data2. These
would need to be changed if the data storage method were considered too slow. The code also
contains a known flaw in the database connectivity: the SQL error message (invalid property
value (null)) is sometimes generated, after which data storage terminates.

To set up ODBC on Windows95, invoke 32 bit ODBC in the Windows control panel. In the User tab
specify a database and call it dtdb. Give it a description and in the Advanced tab set the username
to dtuser and the password to dtpassword. Any changes to these settings will require changes
to the code until support for user input or the windows registry is added to the application.

Remote Method Invocation

The JDBC-ODBC bridge is ideally suited to a three-tier system using RMI. Such a system could
consist of a database controlled by an RMI server which receives requests from a remote client,
possible an applet. The RMI server could be a Java application running on a machine with a HTTP
server. For this arrangement, the application could be split into two parts as follows :

(a) The program could be turned into an applet.
(b) All calls to the dt2001.dll library functions could be replaced with code to

communicate with an RMI server application.
(c) The calls to the DLL could be placed in an RMI server application which could service

requests from the client applet.
(d) All of the database functionality could be transferred to the RMI server .

Software Support for Multiple Trace Boards

This would require some changes to both the Java application and the DLL. EISA devices can be
identified by their I/O base address, which is slot dependent. Any DLL function calls that wishes to
read/write from/to registers would need to either supply an identifier which the DLL could
associate with a base address (possibly obtaining this from the registry) or the base address itself.
The VRAM base addresses for each board could then be obtained by a call to the getmap()
function, specifying an identifier or base address. Using an identifier is probably the most generic
since it adds another layer of abstraction.

6 Microsoft Access does not support BLOBs so this method would require some other database.

DT200.1 Technical Manual

Page 51 28th October, 1998

Execution

The computer used to compile the Java code must have the Java bin directory in its search path.
To compile the Java code, enter :

> javac “DTControlWindow.java”

To run the program, enter :

> java “DTControlWindow”

To run the program on a different computer to the one on which it was compiled, copy the .class
files to some directory and run the program in the usual way.

DT200.1 Technical Manual

Page 52 28th October, 1998

Java Sources

The class control file DBControl.h is :

/* DO NOT EDIT THIS FILE - it is machine generated */
#include <jni.h>
/* Header for class DBControl */

#ifndef _Included_DBControl
#define _Included_DBControl
#ifdef __cplusplus
extern "C" {
#endif
/*
 * Class: DBControl
 * Method: mapRAM
 * Signature: ()I
 */
JNIEXPORT jint JNICALL Java_DBControl_mapRAM
 (JNIEnv *, jobject);

/*
 * Class: DBControl
 * Method: unmapRAM
 * Signature: ()I
 */
JNIEXPORT jint JNICALL Java_DBControl_unmapRAM
 (JNIEnv *, jobject);

/*
 * Class: DBControl
 * Method: getRAM
 * Signature: (I[SII)I
 */
JNIEXPORT jint JNICALL Java_DBControl_getRAM
 (JNIEnv *, jobject, jint, jshortArray, jint, jint);

#ifdef __cplusplus
}
#endif
#endif

The application's native Java source file DTControlWindow.java is as follows :

/*---*\
| DTApp |
| Deep Trace 200.1 Java Test Application |
| |
| DTControlWindow.java |
| Last Modified: 03-09-1998 |
---/

import java.awt.*;
import java.sql.*; // JDBC
import java.util.*;
import java.util.Date;

DT200.1 Technical Manual

Page 53 28th October, 1998

//
// DTControlWindow
//
// Application parent window
//

public class DTControlWindow extends Frame {

// Not sure what this does!
private boolean inAnApplet = true;

// Panel to hold the different cards (REGISTERS, VRAM, ...)
Panel cards;

// Display current card name
Label dsp;

// Card select control
Button c1;
Button c2;

// Panel names - also used to identify panels in the code
final static String CONTROLPANEL = "DT Control";
final static String DATAPANEL = "Data";

public DTControlWindow () {

setFont(new Font("Helvetica", Font.PLAIN, 10));

// Panel to hold the cards
cards = new Panel();
cards.setLayout(new CardLayout());

// Panel to hold choice control
Panel choicePanel = new Panel();
choicePanel.setLayout(new GridLayout(1,8,0,0));
choicePanel.setBackground(Color.lightGray);
c1 = new Button(CONTROLPANEL);
c2 = new Button(DATAPANEL);
dsp = new Label(CONTROLPANEL);

// Add panel title display
choicePanel.add(dsp);

// Padding to force buttons to right of screen
// There might be a better way
choicePanel.add(new Panel());
choicePanel.add(new Panel());
choicePanel.add(new Panel());
choicePanel.add(new Panel());
choicePanel.add(new Panel());

// Add buttons
choicePanel.add(c1);
choicePanel.add(c2);

add("North", choicePanel);

// Cards
ControlPanel p1 = new ControlPanel();
DataPanel p2 = new DataPanel();

DT200.1 Technical Manual

Page 54 28th October, 1998

// ... more cards ...
// ... more cards ...

// Add the cards
cards.add(CONTROLPANEL, p1);
cards.add(DATAPANEL, p2);

// Add the card container to the window
add("Center", cards);

}

// Event handler to change cards
 public boolean action(Event evt, Object arg) {

Object target = evt.target;

if (target == c1) {
// Change card
((CardLayout)cards.getLayout()).show(cards,

 CONTROLPANEL);

// Change card title
dsp.setText(CONTROLPANEL);
return true;

}

if (target == c2) {
// Change card
((CardLayout)cards.getLayout()).show(cards,DATAPANEL);

 // Change card title
dsp.setText(DATAPANEL);
return true;

}

// Allow event to be 'passed up' to allow ancestors
// to handle the event if they need to.
return false;

}

// Tidy up on Application exit (not sure about
// this, it was a cut and paste job).
public boolean handleEvent(Event e) {

if (e.id == Event.WINDOW_DESTROY) {
if (inAnApplet) {

dispose();
return true;

} else {
System.exit(0);

}
}
return super.handleEvent(e);

}

// Entry point (called when app starts)
public static void main(String args[]) {

DTControlWindow window = new DTControlWindow();
 window.inAnApplet = false;

window.setTitle("Deep Trace Application
 (Standalone Version)");

DT200.1 Technical Manual

Page 55 28th October, 1998

window.resize(580,390);
window.show();

}
}

//
// ControlPanel
//
// Container for the DT Control card
// Contains registers and button bar
//
class ControlPanel extends Panel {

AddressMapPanel addrmap;
SampleStopCountPanel ssc;
HeadTransferPtrPanel htp;
ModePanel mode;
TriggerTraceConfigPanel ttc;
SerialBufferPanel sbbe;
StatusPanel stat;
IDPanel id;
ButtonPanel btnbar;

public ControlPanel() {

// Use a GridBagLayout
GridBagLayout gridbag = new GridBagLayout();
GridBagConstraints c = new GridBagConstraints();
setLayout(gridbag);
setBackground(Color.lightGray);

// Default constraint for all components
c.fill = GridBagConstraints.BOTH;

// Set constraints for individual components and add
// them to the panel
addrmap = new AddressMapPanel();
c.gridx = 0; // X Position
c.gridy = 0; // Y Position
c.gridwidth = 1; // X Size
c.gridheight = 1; // Y Size
c.weightx = 0.0; // X Weight (witchcraft, see API help)
c.weighty = 0.0; // Y Weight
gridbag.setConstraints(addrmap, c); // Apply constraints
add(addrmap); // Add component

ssc = new SampleStopCountPanel();
c.gridx = 1;
c.gridy = 0;
c.gridwidth = 1;
c.gridheight = 1;
c.weightx = 0.0;
c.weighty = 0.0;
gridbag.setConstraints(ssc, c);
add(ssc);

htp = new HeadTransferPtrPanel();
c.gridx = 2;
c.gridy = 0;
c.gridwidth = 1;
c.gridheight = 1;

DT200.1 Technical Manual

Page 56 28th October, 1998

c.weightx = 0.0;
c.weighty = 0.0;
gridbag.setConstraints(htp, c);
add(htp);

mode = new ModePanel();
c.gridx = 0;
c.gridy = 1;
c.gridwidth = 1;
c.gridheight = 3;
c.weightx = 0.0;
c.weighty = 0.0;
gridbag.setConstraints(mode, c);
add(mode);

ttc = new TriggerTraceConfigPanel();
c.gridx = 1;
c.gridy = 1;
c.gridwidth = 1;
c.gridheight = 3;
c.weightx = 0.0;
c.weighty = 0.0;
gridbag.setConstraints(ttc, c);
add(ttc);

sbbe = new SerialBufferPanel();
c.gridx = 2;
c.gridy = 1;
c.gridwidth = 1;
c.gridheight = 3;
c.weightx = 0.0;
c.weighty = 0.0;
gridbag.setConstraints(sbbe, c);
add(sbbe);

stat = new StatusPanel();
c.gridx = 0;
c.gridy = 4;
c.gridwidth = 1;
c.gridheight = 1;
c.weightx = 0.0;
c.weighty = 0.0;
gridbag.setConstraints(stat, c);
add(stat);

id = new IDPanel();
c.gridx = 1;
c.gridy = 4;
c.gridwidth = 2;
c.gridheight = 1;
c.weightx = 0.0;
c.weighty = 0.0;
gridbag.setConstraints(id, c);
add(id);

btnbar= new ButtonPanel();
c.gridx = 3;
c.gridy = 0;
c.gridwidth = 1;
c.gridheight = 5;
c.weightx = 1.0;

DT200.1 Technical Manual

Page 57 28th October, 1998

c.weighty = 1.0;
gridbag.setConstraints(btnbar, c);
add(btnbar);

}

// Component padding
public Insets insets() {

return new Insets(10,10,10,10);
 }

// Draw border
public void paint(Graphics g) {

Dimension d = size();
 Color bg = getBackground();

 g.setColor(bg);
 g.draw3DRect(0, 0, d.width - 1, d.height - 1, true);
 g.draw3DRect(3, 3, d.width - 7, d.height - 7, false);

}

// This function updates all the components in the panel
public void Update() {

addrmap.Update();
ssc.Update();
mode.Update();
htp.Update();
ttc.Update();
sbbe.Update();
stat.Update();
id.Update();

}

// The button bar allows all events on its buttons
// to pass up to here (register panel). This allows
// the event handlers for the buttons to control
// other objects.
public boolean action(Event e, Object arg) {

Object target = e.target;

// Register update button event
if (target == btnbar.rupdate) {

Update();
return true;

}

// Board reset button event
if (target == btnbar.breset) {

return true;
}

// Time reset button event
if (target == btnbar.treset) {

return true;
}
return false;

}
}

//
// DataPanel

DT200.1 Technical Manual

Page 58 28th October, 1998

//
// At the moment this just controls the database
//
class DataPanel extends Panel {

DatabasePanel dbcapture;

public DataPanel() {

setLayout(new GridLayout(3,3,10,10));
setBackground(Color.lightGray);

dbcapture = new DatabasePanel();
add(dbcapture);

// Padding for rest of grid
add(new Panel());
add(new Panel());
add(new Panel());
add(new Panel());
add(new Panel());
add(new Panel());
add(new Panel());
add(new Panel());

}

public Insets insets() {
return new Insets(10,10,10,10);

}

public void paint(Graphics g) {
Dimension d = size();
Color bg = getBackground();

g.setColor(bg);
g.draw3DRect(0, 0, d.width - 1, d.height - 1, true);
g.draw3DRect(3, 3, d.width - 7, d.height - 7, false);

}
}

//
// AddressMapPanel
//
class AddressMapPanel extends Panel {

// [JNI] Native (DLL) method declaration
public native void setmap(int value);
public native int getmap();

static {
System.loadLibrary("DT2001J");

}

Label ttl;
TextField adr;
Button wrt;

public AddressMapPanel() {

setLayout(new BorderLayout());
setBackground(Color.lightGray);

DT200.1 Technical Manual

Page 59 28th October, 1998

ttl = new Label("Address Map");
add("North", ttl);

adr = new TextField(14);
add("West", adr);

wrt = new Button();
wrt.setLabel("Write");
add("East", wrt);

}

public Insets insets() {
return new Insets(6,6,6,6);

}

public void paint(Graphics g) {
Dimension d = size();
Color bg = getBackground();

g.setColor(bg);
g.draw3DRect(0, 0, d.width - 1, d.height - 1, true);
g.draw3DRect(3, 3, d.width - 7, d.height - 7, false);

}

// Event handler
public boolean action(Event e, Object arg) {

Object target = e.target;

if (target == wrt) {
Integer i;
i = new Integer(0);
try {

setmap(i.parseInt(adr.getText()));
}
catch (NumberFormatException exception){
}
return true;

}
return false;

}

// Update the contents of this panel
public void Update() {

Integer i = new Integer(0);
adr.setText(i.toHexString(getmap()));

}

}

//
// HeadTransferPtrPanel
//
class HeadTransferPtrPanel extends Panel {

DT200.1 Technical Manual

Page 60 28th October, 1998

// [JNI] Native (DLL) method declaration
public native void setheadptr(int value);
public native int getheadptr();

static {
System.loadLibrary("DT2001J");

}

Label ttl;
TextField htp;
Button wrt;

public HeadTransferPtrPanel() {

setLayout(new BorderLayout());
setBackground(Color.lightGray);

ttl = new Label("Head Transfer Pointer");
add("North", ttl);

htp = new TextField(14);
add("West", htp);

wrt = new Button();
wrt.setLabel("Write");
add("East", wrt);

}

// Event handler
public boolean action(Event e, Object arg) {

Object target = e.target;

if (target == wrt) {
Integer i;
i = new Integer(0);
try {

setheadptr(i.parseInt(htp.getText()));
}
catch (NumberFormatException exception){
}
return true;

}
return false;

}

public Insets insets() {
return new Insets(6,6,6,6);

}

public void paint(Graphics g) {
Dimension d = size();
Color bg = getBackground();

g.setColor(bg);
g.draw3DRect(0, 0, d.width - 1, d.height - 1, true);
g.draw3DRect(3, 3, d.width - 7, d.height - 7, false);

}

// Update the contents of this panel
public void Update() {

DT200.1 Technical Manual

Page 61 28th October, 1998

Integer i = new Integer(0);
htp.setText(i.toHexString(getheadptr()));

}
}

//
// IDPanel
//
class IDPanel extends Panel {

// [JNI] Native method declaration
public native int getEISAID();
public native String gettextEISAID();

static {
System.loadLibrary("DT2001J");

}

Label ttl, ttl2;
TextField idnum, idtext;

public IDPanel () {

setLayout(new GridLayout(2,2));
setBackground(Color.lightGray);

ttl = new Label("EISA ID (Num)");
add(ttl);

idnum = new TextField(14);
add(idnum);

ttl2 = new Label("(Text)");
add(ttl2);

idtext = new TextField(14);
add(idtext);

}

public Insets insets() {
return new Insets(6,6,6,6);

}

public void paint(Graphics g) {
Dimension d = size();
Color bg = getBackground();

g.setColor(bg);
g.draw3DRect(0, 0, d.width - 1, d.height - 1, true);
g.draw3DRect(3, 3, d.width - 7, d.height - 7, false);

}

public void Update() {
Integer i = new Integer(0);
String tmpstr;
tmpstr = gettextEISAID();
idtext.setText(tmpstr);
idnum.setText(i.toHexString(getEISAID()));

}
}

DT200.1 Technical Manual

Page 62 28th October, 1998

//
// ModePanel
//
class ModePanel extends Panel {

// Bit field definitions
final static int DT_SRAMLD = 0x00000001;
final static int DT_PAUSE = 0x00000002;
final static int DT_RECORD = 0x00000004;
final static int DT_WRAP = 0x00000008;
final static int DT_IRQENA = 0x00000040;
final static int DT_DMAENA = 0x00000080;

final static int DT_TC = 0x00000030;
final static int DT_TC20 = 0x00000000;
final static int DT_TC40 = 0x00000010;
final static int DT_TC80 = 0x00000020;
final static int DT_TC160 = 0x00000030;

final static String NS20 = "TIMECFG = 20ns";
final static String NS40 = "TIMECFG = 40ns";
final static String NS80 = "TIMECFG = 80ns";
final static String NS160 = "TIMECFG = 160ns";

// [JNI] Native (DLL) method declaration
public native void setmode(int value);
public native int getmode();

static {
System.loadLibrary("DT2001J");

}

Label ttl;
Checkbox sramld, pause, record, wrap, irqena, dmaena;
Choice timecfg;

public ModePanel () {

setLayout(new GridLayout(8,1));
setBackground(Color.lightGray);

ttl = new Label("Mode");
add(ttl);

sramld = new Checkbox("SRAMLD");
add(sramld);

pause = new Checkbox("PAUSE");
add(pause);

record = new Checkbox("RECORD");
add(record);

wrap = new Checkbox("WRAP");
add(wrap);

irqena = new Checkbox("IRQENA");
add(irqena);

dmaena = new Checkbox("DMAENA");

DT200.1 Technical Manual

Page 63 28th October, 1998

add(dmaena);

timecfg = new Choice();
timecfg.addItem(NS20);
timecfg.addItem(NS40);
timecfg.addItem(NS80);
timecfg.addItem(NS160);
add(timecfg);

}

// Event handler
public boolean action(Event e, Object arg) {

Object target = e.target;

if (target == sramld) {
if (sramld.getState()) { // Box ticked

setmode(getmode() | DT_SRAMLD);
}
else { // Box unticked

setmode(getmode() & ~DT_SRAMLD);
}
return true;

}
if (target == pause) {

if (pause.getState()) { // Box ticked
setmode(getmode() | DT_PAUSE);

}
else { // Box unticked

setmode(getmode() & ~DT_PAUSE);
}
return true;

}
if (target == record) {

if (record.getState()) { // Box ticked
setmode(getmode() | DT_RECORD);

}
else { // Box unticked

setmode(getmode() & ~DT_RECORD);
}
return true;

}
if (target == wrap) {

if (wrap.getState()) { // Box ticked
setmode(getmode() | DT_WRAP);

}
else { // Box unticked

setmode(getmode() & ~DT_WRAP);
}
return true;

}
if (target == irqena) {

if (irqena.getState()) { // Box ticked
setmode(getmode() | DT_IRQENA);

}
else { // Box unticked

setmode(getmode() & ~DT_IRQENA);
}
return true;

}
if (target == dmaena) {

DT200.1 Technical Manual

Page 64 28th October, 1998

if (dmaena.getState()) { // Box ticked
setmode(getmode() | DT_DMAENA);

}
else { // Box unticked

setmode(getmode() & ~DT_DMAENA);
}
return true;

}
if (target == timecfg) {

setmode(getmode() & ~0x000000C0);
switch (timecfg.getSelectedIndex()) {
case 0 :

break;
case 1 :

setmode(getmode() | DT_TC40);
break;

case 2 :
setmode(getmode() | DT_TC80);
break;

case 3 :
setmode(getmode() | DT_TC160);
break;

default :
break;

}
}
return false;

}

public Insets insets() {
return new Insets(6,6,6,6);

}

public void paint(Graphics g) {
Dimension d = size();
Color bg = getBackground();

g.setColor(bg);
g.draw3DRect(0, 0, d.width - 1, d.height - 1, true);
g.draw3DRect(3, 3, d.width - 7, d.height - 7, false);

}

// Update the contents of this panel
public void Update() {

int val = getmode();
sramld.setState(((val & DT_SRAMLD) == DT_SRAMLD)
 ? true : false);
pause.setState(((val & DT_PAUSE) == DT_ PAUSE)
 ? true : false);
record.setState(((val & DT_RECORD) == DT_RECORD)
 ? true : false);
wrap.setState(((val & DT_WRAP) == DT_WRAP)
 ? true : false);
irqena.setState(((val & DT_IRQENA) == DT_IRQEN A)
 ? true : false);
dmaena.setState(((val & DT_DMAENA) == DT_DMAENA)
 ? true : false);

if ((val & DT_TC) == DT_TC20) {
timecfg.select(NS20);

}

DT200.1 Technical Manual

Page 65 28th October, 1998

else if ((val & DT_TC) == DT_TC40) {
timecfg.select(NS40);

}
else if ((val & DT_TC) == DT_TC80) {

timecfg.select(NS80);
}
else {

timecfg.select(NS160);
}

}
}

//
// SampleStopCountPanel
//
class SampleStopCountPanel extends Panel {

// [JNI] Native (DLL) method declaration
public native void setstopcount(int value);
public native int getstopcount();

static {
System.loadLibrary("DT2001J");

}

Label ttl;
TextField ssc;
Button wrt;

public SampleStopCountPanel() {

setLayout(new BorderLayout());
setBackground(Color.lightGray);

ttl = new Label("Sample Stop Count");
add("North", ttl);

ssc = new TextField(14);
add("West", ssc);

wrt = new Button();
wrt.setLabel("Write");
add("East", wrt);

}

// Event handler
public boolean action(Event e, Object arg) {

Object target = e.target;

if (target == wrt) {
Integer i;
i = new Integer(0);
try {

setstopcount(i.parseInt(ssc.getText()));
}
catch (NumberFormatException exception){
}
return true;

}

DT200.1 Technical Manual

Page 66 28th October, 1998

return false;
}

public Insets insets() {
return new Insets(6,6,6,6);

}

public void paint(Graphics g) {
Dimension d = size();
Color bg = getBackground();

g.setColor(bg);
g.draw3DRect(0, 0, d.width - 1, d.height - 1, true);
g.draw3DRect(3, 3, d.width - 7, d.height - 7, false);

}

// Update the contents of this panel
public void Update() {

Integer i = new Integer(0);
ssc.setText(i.toHexString(getstopcount()));

}
}

//
// SerialBufferPanel
//
class SerialBufferPanel extends Panel {

// Bit field definitions
final static int DT_BYTE0 = 0x00000001;
final static int DT_BYTE1 = 0x00000002;
final static int DT_BYTE2 = 0x00000004;
final static int DT_BYTE3 = 0x00000008;
final static int DT_BYTE4 = 0x00000010;
final static int DT_BYTE5 = 0x00000020;

// [JNI] Native (DLL) method declaration
public native void setsbufoutputenas(int value);
public native int getsbufoutputenas();

static {
System.loadLibrary("DT2001J");

}

Label ttl;
Checkbox byte0, byte1, byte2, byte3, byte4, byte5;

public SerialBufferPanel () {

setLayout(new GridLayout(7,1));
setBackground(Color.lightGray);

ttl = new Label("Byte Enables");
add(ttl);

byte0 = new Checkbox("Byte 0");
add(byte0);

byte1 = new Checkbox("Byte 1");
add(byte1);

DT200.1 Technical Manual

Page 67 28th October, 1998

byte2 = new Checkbox("Byte 2");
add(byte2);

byte3 = new Checkbox("Byte 3");
add(byte3);

byte4 = new Checkbox("Byte 4");
add(byte4);

byte5 = new Checkbox("Byte 5");
add(byte5);

}

// Event handler
public boolean action(Event e, Object arg) {

Object target = e.target;

if (target == byte0) {
if (byte0.getState()) { // Box ticked

setsbufoutputenas(getsbufoutputenas() | DT_BYTE0);
}
else { // Box unticked

setsbufoutputenas(getsbufoutputenas() & ~DT_BYTE0);
}
return true;

}

if (target == byte1) {
if (byte1.getState()) { // Box ticked

setsbufoutputenas(getsbufoutputenas() | DT_BYTE1);
}
else { // Box unticked

setsbufoutputenas(getsbufoutputenas() & ~DT_BYTE1);
}
return true;

}
if (target == byte2) {

if (byte2.getState()) { // Box ticked
setsbufoutputenas(getsbufoutputenas() | DT_BYTE2);

}
else { // Box unticked

setsbufoutputenas(getsbufoutputenas() & ~DT_BYTE2);
}
return true;

}
if (target == byte3) {

if (byte3.getState()) { // Box ticked
setsbufoutputenas(getsbufoutputenas() | DT_BYTE3);

}
else { // Box unticked

setsbufoutputenas(getsbufoutputenas() & ~DT_BYTE3);
}
return true;

}
if (target == byte4) {

if (byte4.getState()) { // Box ticked
setsbufoutputenas(getsbufoutputenas() | DT_BYTE4);

}
else { // Box unticked

DT200.1 Technical Manual

Page 68 28th October, 1998

setsbufoutputenas(getsbufoutputenas() & ~DT_BYTE4);
}
return true;

}
if (target == byte5) {

if (byte5.getState()) { // Box ticked
setsbufoutputenas(getsbufoutputenas() | DT_BYTE5);

}
else { // Box unticked

setsbufoutputenas(getsbufoutputenas() & ~DT_BYTE5);
}
return true;

}
return false;

}

public Insets insets() {
return new Insets(6,6,6,6);

}

public void paint(Graphics g) {
Dimension d = size();
Color bg = getBackground();

g.setColor(bg);
g.draw3DRect(0, 0, d.width - 1, d.height - 1, true);
g.draw3DRect(3, 3, d.width - 7, d.height - 7, false);

}

// Update the contents of this panel
public void Update() {

int val = getsbufoutputenas();
byte0.setState(((val & DT_BYTE0) == DT_BYTE0)
 ? true : false);
byte1.setState(((val & DT_BYTE1) == DT_BYTE1)
 ? true : false);
byte2.setState(((val & DT_BYTE2) == DT_BYTE2)
 ? true : false);
byte3.setState(((val & DT_BYTE3) == DT_BYTE3)
 ? true : false);
byte4.setState(((val & DT_BYTE4) == DT_BYTE4)
 ? true : false);
byte5.setState(((val & DT_BYTE5) == DT_BYTE5)
 ? true : false);

}
}

//
// StatusPanel
//
class StatusPanel extends Panel {

// Bit field definitions
final static int DT_DONE = 0x00008000;

// [JNI] Native (DLL) method declaration
public native int getstatus();

static {
System.loadLibrary("DT2001J");

DT200.1 Technical Manual

Page 69 28th October, 1998

}

Label ttl;
Checkbox done;

public StatusPanel() {

setLayout(new GridLayout(2,1));
setBackground(Color.lightGray);

ttl = new Label("Status");
add(ttl);

done = new Checkbox("Done");
add(done);

}

public Insets insets() {
return new Insets(6,6,6,6);

}

public void paint(Graphics g) {
Dimension d = size();
Color bg = getBackground();

g.setColor(bg);
g.draw3DRect(0, 0, d.width - 1, d.height - 1, true);
g.draw3DRect(3, 3, d.width - 7, d.height - 7, false);

}

// Update the contents of this panel
public void Update() {

//int val = getstatus();
//done.setState(((val & DT_DONE) == DT_DONE)
 ? true : false);

}
}

//
// TriggerTraceConfigPanel
//
class TriggerTraceConfigPanel extends Panel {

// Bit field definitions
final static int DT_CH0 = 0x00000001;
final static int DT_CH1 = 0x00000002;
final static int DT_CH2 = 0x00000004;
final static int DT_CH3 = 0x00000008;
final static int DT_TC = 0x0000001 0;
final static int DT_TI = 0x00000020;

// [JNI] Native (DLL) method declarations
public native void settrigconfig(int value);
public native int gettrigconfig();

static {
System.loadLibrary("DT2001J");

}

Label ttl;

DT200.1 Technical Manual

Page 70 28th October, 1998

Checkbox ch0, ch1, ch2, ch3, tc, ti;

public TriggerTraceConfigPanel () {

setLayout(new GridLayout(7,1));
setBackground(Color.lightGray);

ttl = new Label("Trigger/Trace Config");
add(ttl);

ch0 = new Checkbox("Channel 0");
add(ch0);

ch1 = new Checkbox("Channel 1");
add(ch1);

ch2 = new Checkbox("Channel 2");
add(ch2);

ch3 = new Checkbox("Channel 3");
add(ch3);

tc = new Checkbox("Trace Continuously");
add(tc);

ti = new Checkbox("Trigger Immediately");
add(ti);

}

// Event handler
public boolean action(Event e, Object arg) {

Object target = e.target;

if (target == ch0) {
if (ch0.getState()) { // Box ticked

settrigconfig(gettrigconfig() | DT_CH0);
}
else { // Box unticked

settrigconfig(gettrigconfig() & ~DT_CH0);
}
return true;

}
if (target == ch1) {

if (ch1.getState()) { // Box ticked
settrigconfig(gettrigconfig() | DT_CH1);

}
else { // Box unticked

settrigconfig(gettrigconfig() & ~DT_CH1);
}
return true;

}
if (target == ch2) {

if (ch2.getState()) { // Box ticked
settrigconfig(gettrigconfig() | DT_CH2);

}
else { // Box unticked

settrigconfig(gettrigconfig() & ~DT_CH2);
}
return true;

}

DT200.1 Technical Manual

Page 71 28th October, 1998

if (target == ch3) {
if (ch3.getState()) { // Box ticked

settrigconfig(gettrigconfig() | DT_CH3);
}
else { // Box unticked

settrigconfig(gettrigconfig() & ~DT_CH3);
}
return true;

}
if (target == tc) {

if (tc.getState()) { // Box ticked
settrigconfig(gettrigconfig() | DT_TC);

}
else { // Box unticked

settrigconfig(gettrigconfig() & ~DT_TC);
}
return true;

}
if (target == ti) {

if (ti.getState()) { // Box ticked
settrigconfig(gettrigconfig() | DT_TI);

}
else { // Box unticked

settrigconfig(gettrigconfig() & ~DT_TI);
}
return true;

}
return false;

}

public Insets insets() {
return new Insets(6,6,6,6);

}

public void paint(Graphics g) {
Dimension d = size();
Color bg = getBackground();

g.setColor(bg);
g.draw3DRect(0, 0, d.width - 1, d.height - 1, true);
g.draw3DRect(3, 3, d.width - 7, d.height - 7, false);

}

// Called to update the contents of this panel
public void Update() {

int val = gettrigconfig();
ch0.setState(((val & DT_CH0) == DT_CH0) ? true : false);
ch1.setState(((val & DT_CH1) == DT_CH1) ? true : false);
ch2.setState(((val & DT_CH2) == DT_CH2) ? true : false);
ch3.setState(((val & DT_CH3) == DT_CH3) ? true : false);
tc.setState(((val & DT_TC) == DT_TC) ? true : false);
ti.setState(((val & DT_TI) == DT_TI) ? true : false);

}
}

//
// ButtonPanel
//
class ButtonPanel extends Panel {

Button treset, breset, rupdate, start;

DT200.1 Technical Manual

Page 72 28th October, 1998

Label tsts, bcntrl, regs;

static {
System.loadLibrary("DT2001J");

}

public ButtonPanel () {
setLayout(new GridLayout(10,1,3,3));
setBackground(Color.lightGray);

tsts = new Label("Tests");
add(tsts);

start = new Button("Start");
add(start);

add(new Panel());

regs = new Label("Registers");
add(regs);

rupdate = new Button("Update");
add(rupdate);

add(new Panel());

bcntrl = new Label("Control");
add(bcntrl);

treset = new Button("Time Reset");
add(treset);

breset = new Button("Board Reset");
add(breset);

}

public Insets insets() {
return new Insets(6,6,6,6);

}

public void paint(Graphics g) {
Dimension d = size();
Color bg = getBackground();

g.setColor(bg);
g.draw3DRect(0, 0, d.width - 1, d.height - 1, true);
g.draw3DRect(3, 3, d.width - 7, d.height - 7, false);

}
}

//
// DatabasePanel
//
class DatabasePanel extends Panel {

DBControl db;

Label ttl;
Label lblfrm;
Label lblnum;
TextField txtfrm;

DT200.1 Technical Manual

Page 73 28th October, 1998

TextField txtnum;
Button exec;

public DatabasePanel() {
GridBagLayout gridbag = new GridBagLayout();
GridBagConstraints c = new GridBagConstraints();
setLayout(gridbag);
setBackground(Color.lightGray);

c.fill = GridBagConstraints.BOTH;

ttl = new Label("Store Data");
ttl.setAlignment(Label.CENTER);
c.gridx = 0;
c.gridy = 0;
c.gridwidth = 2;
c.gridheight = 1;
c.weightx = 1.0;
c.weighty = 0.0;
gridbag.setConstraints(ttl, c);
add(ttl);

lblfrm = new Label("From (Hex)");
c.gridx = 0;
c.gridy = 2;
c.gridwidth = 1;
c.gridheight = 1;
c.weightx = 0.0;
c.weighty = 0.0;
gridbag.setConstraints(lblfrm, c);
add(lblfrm);

lblnum = new Label("Number (Hex)");
c.gridx = 0;
c.gridy = 4;
c.gridwidth = 1;
c.gridheight = 1;
c.weightx = 0.0;
c.weighty = 0.0;
gridbag.setConstraints(lblnum, c);
add(lblnum);

txtfrm = new TextField("0");
c.gridx = 1;
c.gridy = 2;
c.gridwidth = 2;
c.gridheight = 1;
c.weightx = 0.0;
c.weighty = 0.0;
gridbag.setConstraints(txtfrm, c);
add(txtfrm);

txtnum = new TextField("1000");
c.gridx = 1;
c.gridy = 4;
c.gridwidth = 2;
c.gridheight = 1;
c.weightx = 1.0;
c.weighty = 0.0;
gridbag.setConstraints(txtnum, c);
add(txtnum);

DT200.1 Technical Manual

Page 74 28th October, 1998

exec = new Button("Store");
c.gridx = 0;
c.gridy = 6;
c.gridwidth = 2;
c.gridheight = 1;
c.weightx = 0.0;
c.weighty = 1.0;
gridbag.setConstraints(exec, c);
add(exec);

db = new DBControl("jdbc:odbc:dtdb");
}

public Insets insets() {
return new Insets(6,6,6,6);

}

public void paint(Graphics g) {
Dimension d = size();
Color bg = getBackground();

g.setColor(bg);
g.draw3DRect(0, 0, d.width - 1, d.height - 1, true);
g.draw3DRect(3, 3, d.width - 7, d.height - 7, false);

}

// Event handler
public boolean action(Event e, Object arg) {

Object target = e.target;

if (target == exec) {
Integer i;
i = new Integer(0);
int frm, num;

try {
frm = i.parseInt(txtfrm.getText(), 16);
num = i.parseInt(txtnum.getText(), 16);

}
catch (NumberFormatException exception){

frm = 0;
num = 1024;

}
db.captureData(frm, num);
return true;

}
return false;

}

public void finalize() {
db.close();

}
}

//
// Database Connectivity
//
class DBControl {

DT200.1 Technical Manual

Page 75 28th October, 1998

// [JNI] Native (DLL) method declarations
public native int mapRAM();
public native int unmapRAM();
public native int getRAM(int address, short[] buf,
 int startaddr, int bytes);

String url;
Connection con;

public DBControl(String DBName) {
url = DBName;

try {
// Load bridge driver
Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

// Find driver for URL
Driver jdbcDriver = DriverManager.getDriver(url);

// Define properties for connections (security)
Properties propertyList = new Properties();
propertyList.put("user", "dtuser");
propertyList.put("password", "dtpassword");

// Verbose status messages
// *** DISABLE THIS FOR WORKING VERSIONS ***
// DriverManager.setLogStream(System.out);
// ***

// Establish connection
con = DriverManager.getConnection(url, propertyList);

}
catch (SQLException ex) {

System.out.println("Exception while trying to connect");
while (ex != null) {

System.out.println("SQLState: " + ex.getSQLState());
System.out.println("Message: " + ex.getMessage());
System.out.println("Vendor: " + ex.getErrorCode());
System.out.println("URL: " + url);
ex = ex.getNextException();
System.out.println("");

}
}
catch (java.lang.Exception ex) {

ex.printStackTrace();
}

}

// Store data from trace board in database
// (Works for just one board at the momen t)
public void captureData(int from, int samples) {

// Linear address returned from mapRAM function
// Serves as a handle for calls to other memory functions
int LA = mapRAM();

// Pre-compiled SQL statement
PreparedStatement pstmt;

int i;

DT200.1 Technical Manual

Page 76 28th October, 1998

// Buffer for trace data
short[] buffer;

// Allocate space for buffer
buffer = new short[80000];

// There seems to be problem with very large arrays
// so the data is written to the database in blocks.

// This code may need some work

// Read data in 0x20000 blocks until there are
// less than 0x20000 samples left.
while (samples > 20000) {

getRAM(LA, buffer, from << 3, 100000);
samples -= 20000;
from += 100000;

// Store the data in the database
try {

pstmt = con.prepareStatement(
 "INSERT INTO TraceBoardData (Board1Counter,
 Board1Data1, Board1Data2) VALUES (?, ?, ?)");
for (i = 0; i < 80000; i += 4) {

pstmt.setInt(1, i >> 2);
pstmt.setInt(2, buffer[i]);
pstmt.setInt(3, buffer[i + 1]);
pstmt.executeUpdate();

}
}
catch (SQLException ex) {

System.out.println("Exception while executing query");
while (ex != null) {

System.out.println(
 "SQLState: " + ex.getSQLState());
System.out.println("Message: " + ex.getMessage());
System.out.println("Vendor: " + ex.getErrorCode());
ex = ex.getNextException();
System.out.println("");

}
}

}

// Read what's left
getRAM(LA, buffer, from << 3, samples << 3);

// Store the data in the database
try {

pstmt = con.prepareStatement(
 "INSERT INTO TraceBoardData (Board1Counter,

 Board1Data1, Board1Data2) VALUES (?, ?, ?)");
for (i = 0; i < samples << 2; i += 4) {

pstmt.setInt(1, i >> 2);
pstmt.setInt(2, buffer[i]);
pstmt.setInt(3, buffer[i + 1]);
pstmt.executeUpdate();

}
}
catch (SQLException ex) {

System.out.println("Exception while executing query");

DT200.1 Technical Manual

Page 77 28th October, 1998

while (ex != null) {
System.out.println("SQLState: " + ex.getSQ LState());
System.out.println("Message: " + ex.getMessage());
System.out.println("Vendor: " + ex.getErrorCode());
ex = ex.getNextException();
System.out.println("");

}
}

if (unmapRAM() == 0) { // Java differentiates between
// ints and booleans

System.out.println("Memory unmap error");
}

}

// Close the database connection
public void close () {

try {
con.close();

}
catch (SQLException ex) {

System.out.println(
 "Exception while closing database connection");
while (ex != null) {

System.out.println("SQLState: " + ex.getSQLState());
System.out.println("Message: " + ex.getMessage());
System.out.println("Vendor: " + ex.getErrorCode());
ex = ex.getNextException();
System.out.println("");

}
}

}
}

For further information on the Java Native Interface see :

1. “Using the JNI”, Beth Stearns,
 http://www.java.sun.com/docs/books/tutorial/native1.1/index.html

For further information on Java Database Connectivity see :

1. “Storing Java in a Relational Database”, John Dreystadt, Byte, June 1998.

2. “Teach Yourself Café in 21 days”, Eric Herrmann, Chapter 15,
 http://www.developer.com/reference/library/1575211572/ch15.htm

3. “JDBC Guide: Getting Started”, Sun Microsystems Inc.,
 http://www.java.sun.com/products/jdk/1.2/docs/guide/jdbc/getstart/introTOC.doc.html.

DT200.1 Technical Manual

Page 78 28th October, 1998

Initialisation & EISA configuration

The EISA specification requires a read only identifier to be encoded at the slot specific I/O address
plus 0x80-83, i.e. at 0xZ080-0xZ083. The encoding format assumes :

 0xZ080[7] = 0
0xZ080[6..2] = encoded_char1[4..0]
0xZ080[1..0] = encoded_char2[4..3]
0xZ081[7..5] = encoded_char2[2..0]
0xZ081[4..0] = encoded_char3[4..0]
0xZ082[7..4] = encoded_char4[3..0]
0xZ082[3..0] = encoded_char5[3..0]
0xZ083[7..4] = encoded_char6[3..0]
0xZ083[3..0] = encoded_char7[3..0]

where the ASCII characters of the identifier can be constructed as follows :

ASCII_char1[7..0] = 0x40 + encoded_char1[4..0]
ASCII_char2[7..0] = 0x40 + encoded_char2[4..0]
ASCII_char3[7..0] = 0x40 + encoded_char3[4..0]
ASCII_char4[7..0] = 0x30 + encoded_char4[3..0]
ASCII_char5[7..0] = 0x30 + encoded_char5[3..0]
ASCII_char6[7..0] = 0x30 + encoded_char6[3..0]
ASCII_char7[7..0] = 0x30 + encoded_char7[3..0]

Currently this register reads out a value of 0x01209212, representing :

'DTR200.1'

where the decimal point is implied within the encoding. This is the unique EISA ID for the board.
This allows the board to be initialised on power up by the system board from initialisation values
stored in the BIOS CMOS RAM. It also allows the driver software to scan the EISA slot specific
I/O addresses to identify which slots contain trace boards, from which their I/O addresses may be
derived.

The EISA initialization is configured by an EISA configuration file, and is stored into the BIOS
CMOS RAM by an EISA configuration utility, such as AMI's CFG.EXE utility. The most useful
values to initiliaize are the contents of the ADDRMAP register (to set up a separate VRAM base
address for each board) and the MODE register (to set the PAUSE bit). The PAUSE bit could be set
unconditionally, whereas each ADDRMAP register would have to be individually configured for
each installed board by the EISA configuration utility. The following EISA configuration file,
!DTR2001.CFG, is more general :

BOARD
 ID="DTR2001"
 NAME="DT200.1 Deep Trace Board"
 MFR="Trinity College Dublin"
 CATEGORY="OTH"
 SLOT=EISA
 LENGTH=330
 AMPERAGE=1000
 SKIRT=NO
 READID=YES
 IOCHECK=INVALID
 DISABLE=UNSUPPORTED
 COMMENTS="DT200.1 Configuration File Ver. 1.0"

DT200.1 Technical Manual

Page 79 28th October, 1998

IOPORT(1)=0z000h ;RESET address
 SIZE = DWORD
 INITVAL = 00000000000000000000000000000000
IOPORT(2)=0z004h ;ADDRMAP address
 SIZE = DWORD
 INITVAL = XXXXXXXX111111111111111111111111
IOPORT(3)=0z008h ;MODE address
 SIZE = DWORD
 INITVAL = 111111111111111111111111XXXXXXXX
IOPORT(4)=0z00Ch ;TRIGCONF address
 SIZE = DWORD
 INITVAL = 11111111111111111111111111XXXXXX
IOPORT(5)=0z010h ;TIMERESET address
 SIZE = DWORD
 INITVAL = 00000000000000000000000000000000
IOPORT(6)=0z014h ;STOPCOUNT address
 SIZE = DWORD
 INITVAL = 11111111XXXXXXXXX111111111111111
IOPORT(7)=0z018h ;HEADPTR address
 SIZE = DWORD
 INITVAL = 11111111XXXXXXXXX111111111111111
IOPORT(8)=0z01Ch ;OUTPUTENA address
 SIZE = DWORD
 INITVAL = 11111111111111111111111111XXXXXX
IOPORT(9)=0z020h ;STATUS address
 SIZE = DWORD
 INITVAL = 1111111111111111R111111111111111
IOPORT(10)=0z080h ;EISAID address
 SIZE = DWORD
 INITVAL = RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

FUNCTION = "Deep Trace Configuration"
 TYPE = "DT2001"
 HELP = "This selection sets the Deep Trace board
 post-RESET configuration."

 SUBFUNCTION = "Select VRAM Base Address"
 HELP = "This option selects the VRAM base address."
 CHOICE = "Base Address = 00"
 FREE
 INIT=IOPORT(2) LOC(31 30 29 28 27 26 25 24) 00000000B
 CHOICE = "Base Address = 01"
 FREE
 INIT=IOPORT(2) LOC(31 30 29 28 27 26 25 24) 00000001B
 CHOICE = "Base Address = 02"
 FREE
 INIT=IOPORT(2) LOC(31 30 29 28 27 26 25 24) 00000010B
 CHOICE = "Base Address = 03"
 FREE
 INIT=IOPORT(2) LOC(31 30 29 28 27 26 25 24) 00000011B
 CHOICE = "Base Address = 04"
 FREE
 INIT=IOPORT(2) LOC(31 30 29 28 27 26 25 24) 00000100B
 CHOICE = "Base Address = 05"
 FREE
 INIT=IOPORT(2) LOC(31 30 29 28 27 26 25 24) 00000101B
 CHOICE = "Base Address = 06"
 FREE
 INIT=IOPORT(2) LOC(31 30 29 28 27 26 25 24) 00000110B
 CHOICE = "Base Address = 07"

DT200.1 Technical Manual

Page 80 28th October, 1998

 FREE
 INIT=IOPORT(2) LOC(31 30 29 28 27 26 25 24) 00000111B
 CHOICE = "Base Address = 08"
 FREE
 INIT=IOPORT(2) LOC(31 30 29 28 27 26 25 24) 00001000B
 CHOICE = "Base Address = 09"
 FREE
 INIT=IOPORT(2) LOC(31 30 29 28 27 26 25 24) 00001001B
 CHOICE = "Base Address = 0A"
 FREE
 INIT=IOPORT(2) LOC(31 30 29 28 27 26 25 24) 00001010B
 CHOICE = "Base Address = 0B"
 FREE
 INIT=IOPORT(2) LOC(31 30 29 28 27 26 25 24) 00001011B
 CHOICE = "Base Address = 0C"
 FREE
 INIT=IOPORT(2) LOC(31 30 29 28 27 26 25 24) 00001100B
 CHOICE = "Base Address = 0D"
 FREE
 INIT=IOPORT(2) LOC(31 30 29 28 27 26 25 24) 00001101B
 CHOICE = "Base Address = 0E"
 FREE
 INIT=IOPORT(2) LOC(31 30 29 28 27 26 25 24) 00001110B
 CHOICE = "Base Address = 0F"
 FREE
 INIT=IOPORT(2) LOC(31 30 29 28 27 26 25 24) 00001111B
 CHOICE = "Base Address = 10"
 FREE
 INIT=IOPORT(2) LOC(31 30 29 28 27 26 25 24) 00010000B
 CHOICE = "Base Address = 11"
 FREE
 INIT=IOPORT(2) LOC(31 30 29 28 27 26 25 24) 00010001B
 CHOICE = "Base Address = 12"
 FREE
 INIT=IOPORT(2) LOC(31 30 29 28 27 26 25 24) 00010010B
 CHOICE = "Base Address = 13"
 FREE
 INIT=IOPORT(2) LOC(31 30 29 28 27 26 25 24) 00010011B
 CHOICE = "Base Address = 14"
 FREE
 INIT=IOPORT(2) LOC(31 30 29 28 27 26 25 24) 00010100B
 CHOICE = "Base Address = 15"
 FREE
 INIT=IOPORT(2) LOC(31 30 29 28 27 26 25 24) 00010101B
 CHOICE = "Base Address = 16"
 FREE
 INIT=IOPORT(2) LOC(31 30 29 28 27 26 25 24) 00010110B
 CHOICE = "Base Address = 17"
 FREE
 INIT=IOPORT(2) LOC(31 30 29 28 27 26 25 24) 00010111B
 CHOICE = "Base Address = 18"
 FREE
 INIT=IOPORT(2) LOC(31 30 29 28 27 26 25 24) 00011000B
 CHOICE = "Base Address = 19"
 FREE
 INIT=IOPORT(2) LOC(31 30 29 28 27 26 25 24) 00011001B
 CHOICE = "Base Address = 1A"
 FREE
 INIT=IOPORT(2) LOC(31 30 29 28 27 26 25 24) 00011010B
 CHOICE = "Base Address = 1B"
 FREE

DT200.1 Technical Manual

Page 81 28th October, 1998

 INIT=IOPORT(2) LOC(31 30 29 28 27 26 25 24) 00011011B
 CHOICE = "Base Address = 1C"
 FREE
 INIT=IOPORT(2) LOC(31 30 29 28 27 26 25 24) 00011100B
 CHOICE = "Base Address = 1D"
 FREE
 INIT=IOPORT(2) LOC(31 30 29 28 27 26 25 24) 00011101B
 CHOICE = "Base Address = 1E"
 FREE
 INIT=IOPORT(2) LOC(31 30 29 28 27 26 25 24) 00011110B
 CHOICE = "Base Address = 1F"
 FREE
 INIT=IOPORT(2) LOC(31 30 29 28 27 26 25 24) 00011111B

 SUBFUNCTION = "Choose between VRAM or SRAM Access"
 HELP = "This option chooses between SRAM access
 rather than VRAM access."
 CHOICE = "VRAM Access"
 FREE
 INIT=IOPORT(3) LOC(0) 0B
 CHOICE = "SRAM Access"
 FREE
 INIT=IOPORT(3) LOC(0) 1B

 SUBFUNCTION = "Pause Acquisition of Data"
 HELP = "This option allows data acquisition to be halted."
 CHOICE = "Pause Data Acquisition"
 FREE
 INIT=IOPORT(3) LOC(1) 1B
 CHOICE = "Continue Data Acquisition"
 FREE
 INIT=IOPORT(3) LOC(1) 0B

 SUBFUNCTION = "Acquire/Generate Data"
 HELP = "This option choose between data acquisition
 and generation. For acquisition the MODE
 register RECORD bit is set, for generation
 it is reset."
 CHOICE = "Acquire (Record) Data"
 FREE
 INIT=IOPORT(3) LOC(2) 1B
 CHOICE = "Generate Data"
 FREE
 INIT=IOPORT(3) LOC(2) 0B

 SUBFUNCTION = "Enable/Disable VRAM Buffer Wrap"
 HELP = "This option enables/disables VRAM buffer wrap."
 CHOICE = "Enable Buffer Wrap"
 FREE
 INIT=IOPORT(3) LOC(3) 1B
 CHOICE = "Disable Buffer Wrap"
 DISABLE = YES
 FREE
 INIT=IOPORT(3) LOC(3) 0B

 SUBFUNCTION = "Timestamp Clock Divisor"
 HELP = "This option allows choice of the timestamp
 clock divisor."
 CHOICE = "Timestamp Divisor = 1"
 FREE
 INIT=IOPORT(3) LOC(5 4) 00B

DT200.1 Technical Manual

Page 82 28th October, 1998

 CHOICE = "Timestamp Divisor = 2"
 FREE
 INIT=IOPORT(3) LOC(5 4) 01B
 CHOICE = "Timestamp Divisor = 4"
 FREE
 INIT=IOPORT(3) LOC(5 4) 10B
 CHOICE = "Timestamp Divisor = 8"
 FREE
 INIT=IOPORT(3) LOC(5 4) 11B

 SUBFUNCTION = "DMA Channel 7 Enable/Disable"
 HELP = "This option enables/disables DMA channel 7
 to be used by DT200.1 drivers."
 CHOICE = "DMA 7 Enable"
 LINK
 DMA = 7
 SHARE = NO
 INIT=IOPORT(3) LOC(6) 1B
 CHOICE = "DMA 7 Disable"
 DISABLE = YES
 FREE
 INIT=IOPORT(3) LOC(6) 0B

 SUBFUNCTION = "IRQ 12 Enable/Disable"
 HELP = "This option enables/disables IRQ channel 12
 to be used by DT200.1 drivers."
 CHOICE = "IRQ 12 Enable"
 FREE
 INIT=IOPORT(3) LOC(7) 1B
 LINK
 IRQ = 12
 SHARE = NO
 TRIGGER = EDGE
 CHOICE = "IRQ 12 Disable"
 DISABLE = YES
 FREE
 INIT=IOPORT(3) LOC(7) 0B

 SUBFUNCTION = "Select Channel 0 Trigger/Trace"
 HELP = "This option choose between trigger and trace
 definition for channel 0."
 CHOICE = "Channel 0 Trigger"
 FREE
 INIT=IOPORT(4) LOC(0) 1B
 CHOICE = "Channel 0 Trace"
 FREE
 INIT=IOPORT(4) LOC(0) 0B

 SUBFUNCTION = "Select Channel 1 Trigger/Trace"
 HELP = "This option choose between trigger and trace
 definition for channel 1."
 CHOICE = "Channel 1 Trigger"
 FREE
 INIT=IOPORT(4) LOC(1) 1B
 CHOICE = "Channel 1 Trace"
 FREE
 INIT=IOPORT(4) LOC(1) 0B

 SUBFUNCTION = "Select Channel 2 Trigger/Trace"
 HELP = "This option choose between trigger and trace
 definition for channel 2."

DT200.1 Technical Manual

Page 83 28th October, 1998

 CHOICE = "Channel 2 Trigger"
 FREE
 INIT=IOPORT(4) LOC(2) 1B
 CHOICE = "Channel 2 Trace"
 FREE
 INIT=IOPORT(4) LOC(2) 0B

 SUBFUNCTION = "Select Channel 3 Trigger/Trace"
 HELP = "This option choose between trigger and trace
 definition for channel 3."
 CHOICE = "Channel 3 Trigger"
 FREE
 INIT=IOPORT(4) LOC(3) 1B
 CHOICE = "Channel 3 Trace"
 FREE
 INIT=IOPORT(4) LOC(3) 0B

 SUBFUNCTION = "Continuously Acquire Data"
 HELP = "This option chooses between filtered and unfiltered
 tracing of data. Filtered tracing means data is
 acquired only when it matches a trace pattern.
 Unfiltered tracing means data is continuously
 acquired (the TRACE CONTINUOUSLY bit is set)."
 CHOICE = "Trace Continuously"
 FREE
 INIT=IOPORT(4) LOC(4) 1B
 CHOICE = "Trace on Pattern Match"
 FREE
 INIT=IOPORT(4) LOC(4) 0B

 SUBFUNCTION = "Trigger Immediately"
 HELP = "This option chooses between immediate triggering
 of the Stop Counter or not. Immediate triggering
 means the Stop Counter starts decrementing even
 if the data does not match a trigger pattern."
 CHOICE = "Trigger Immediately"
 FREE
 INIT=IOPORT(4) LOC(5) 1B
 CHOICE = "Trigger on Pattern Match"
 DISABLE = YES
 FREE
 INIT=IOPORT(4) LOC(5) 0B

 SUBFUNCTION = "Set the Stop Count"
 HELP = "This option sets the sample count before data
 acquistion ends (after triggering). A value of
 000000000 means that sampling will stop immediately
 after triggering, so that the trigger item is
 at the end of the trace data. A value of 111111111
 means that sampling will stop such that the
 trigger item is at the beginning of the trace data."
 CHOICE = "Stop Count = 000"
 FREE
 INIT=IOPORT(6) LOC(23 22 21 20 19 18 17 16 15) 000000000B
 CHOICE = "Stop Count = 001"
 FREE
 INIT=IOPORT(6) LOC(23 22 21 20 19 18 17 16 15) 000000001B
 CHOICE = "Stop Count = 002"
 FREE
 INIT=IOPORT(6) LOC(23 22 21 20 19 18 17 16 15) 000000010B
 CHOICE = "Stop Count = 003"

DT200.1 Technical Manual

Page 84 28th October, 1998

 FREE
 INIT=IOPORT(6) LOC(23 22 21 20 19 18 17 16 15) 000000011B
 CHOICE = "Stop Count = 004"
 FREE
 INIT=IOPORT(6) LOC(23 22 21 20 19 18 17 16 15) 000000100B
 CHOICE = "Stop Count = 005"
 FREE
 INIT=IOPORT(6) LOC(23 22 21 20 19 18 17 16 15) 000000101B
 CHOICE = "Stop Count = 006"
 FREE
 INIT=IOPORT(6) LOC(23 22 21 20 19 18 17 16 15) 000000110B
 CHOICE = "Stop Count = 007"
 FREE
 INIT=IOPORT(6) LOC(23 22 21 20 19 18 17 16 15) 000000111B
 CHOICE = "Stop Count = 008"
 FREE
 INIT=IOPORT(6) LOC(23 22 21 20 19 18 17 16 15) 000001000B
 CHOICE = "Stop Count = 009"
 FREE
 INIT=IOPORT(6) LOC(23 22 21 20 19 18 17 16 15) 000001001B
 CHOICE = "Stop Count = 00A"
 FREE
 INIT=IOPORT(6) LOC(23 22 21 20 19 18 17 16 15) 000001010B
 CHOICE = "Stop Count = 00B"
 FREE
 INIT=IOPORT(6) LOC(23 22 21 20 19 18 17 16 15) 000001011B
 CHOICE = "Stop Count = 00C"
 FREE
 INIT=IOPORT(6) LOC(23 22 21 20 19 18 17 16 15) 000001100B
 CHOICE = "Stop Count = 00D"
 FREE
 INIT=IOPORT(6) LOC(23 22 21 20 19 18 17 16 15) 000001101B
 CHOICE = "Stop Count = 00E"
 FREE
 INIT=IOPORT(6) LOC(23 22 21 20 19 18 17 16 15) 000001110B
 CHOICE = "Stop Count = 00F"
 FREE
 INIT=IOPORT(6) LOC(23 22 21 20 19 18 17 16 15) 000001111B
 CHOICE = "Stop Count = 010"
 FREE
 INIT=IOPORT(6) LOC(23 22 21 20 19 18 17 16 15) 000011111B
 CHOICE = "Stop Count = 020"
 FREE
 INIT=IOPORT(6) LOC(23 22 21 20 19 18 17 16 15) 000100000B
 CHOICE = "Stop Count = 030"
 FREE
 INIT=IOPORT(6) LOC(23 22 21 20 19 18 17 16 15) 000110000B
 CHOICE = "Stop Count = 040"
 FREE
 INIT=IOPORT(6) LOC(23 22 21 20 19 18 17 16 15) 001000000B
 CHOICE = "Stop Count = 050"
 FREE
 INIT=IOPORT(6) LOC(23 22 21 20 19 18 17 16 15) 001010000B
 CHOICE = "Stop Count = 060"
 FREE
 INIT=IOPORT(6) LOC(23 22 21 20 19 18 17 16 15) 001100000B
 CHOICE = "Stop Count = 070"
 FREE
 INIT=IOPORT(6) LOC(23 22 21 20 19 18 17 16 15) 001110000B
 CHOICE = "Stop Count = 080"
 FREE

DT200.1 Technical Manual

Page 85 28th October, 1998

 INIT=IOPORT(6) LOC(23 22 21 20 19 18 17 16 15) 010000000B
 CHOICE = "Stop Count = 090"
 FREE
 INIT=IOPORT(6) LOC(23 22 21 20 19 18 17 16 15) 010010000B
 CHOICE = "Stop Count = 0A0"
 FREE
 INIT=IOPORT(6) LOC(23 22 21 20 19 18 17 16 15) 010100000B
 CHOICE = "Stop Count = 0B0"
 FREE
 INIT=IOPORT(6) LOC(23 22 21 20 19 18 17 16 15) 010110000B
 CHOICE = "Stop Count = 0C0"
 FREE
 INIT=IOPORT(6) LOC(23 22 21 20 19 18 17 16 15) 011000000B
 CHOICE = "Stop Count = 0D0"
 FREE
 INIT=IOPORT(6) LOC(23 22 21 20 19 18 17 16 15) 011010000B
 CHOICE = "Stop Count = 0E0"
 FREE
 INIT=IOPORT(6) LOC(23 22 21 20 19 18 17 16 15) 011100000B
 CHOICE = "Stop Count = 0F0"
 FREE
 INIT=IOPORT(6) LOC(23 22 21 20 19 18 17 16 15) 011110000B
 CHOICE = "Stop Count = 100"
 FREE
 INIT=IOPORT(6) LOC(23 22 21 20 19 18 17 16 15) 100000000B
 CHOICE = "Stop Count = 140"
 FREE
 INIT=IOPORT(6) LOC(23 22 21 20 19 18 17 16 15) 101000000B
 CHOICE = "Stop Count = 180"
 FREE
 INIT=IOPORT(6) LOC(23 22 21 20 19 18 17 16 15) 110000000B
 CHOICE = "Stop Count = 1C0"
 FREE
 INIT=IOPORT(6) LOC(23 22 21 20 19 18 17 16 15) 111000000B

 SUBFUNCTION = "Set the Head Pointer"
 HELP = "This option sets the VRAM address from which data
 data storage begins."
 CHOICE = "Head Pointer = 000"
 FREE
 INIT=IOPORT(7) LOC(23 22 21 20 19 18 17 16 15) 000000000B
 CHOICE = "Head Pointer = 001"
 FREE
 INIT=IOPORT(7) LOC(23 22 21 20 19 18 17 16 15) 000000001B
 CHOICE = "Head Pointer = 002"
 FREE
 INIT=IOPORT(7) LOC(23 22 21 20 19 18 17 16 15) 000000010B
 CHOICE = "Head Pointer = 003"
 FREE
 INIT=IOPORT(7) LOC(23 22 21 20 19 18 17 16 15) 000000011B
 CHOICE = "Head Pointer = 004"
 FREE
 INIT=IOPORT(7) LOC(23 22 21 20 19 18 17 16 15) 000000100B
 CHOICE = "Head Pointer = 005"
 FREE
 INIT=IOPORT(7) LOC(23 22 21 20 19 18 17 16 15) 000000101B
 CHOICE = "Head Pointer = 006"
 FREE
 INIT=IOPORT(7) LOC(23 22 21 20 19 18 17 16 15) 000000110B
 CHOICE = "Head Pointer = 007"
 FREE

DT200.1 Technical Manual

Page 86 28th October, 1998

 INIT=IOPORT(7) LOC(23 22 21 20 19 18 17 16 15) 000000111B
 CHOICE = "Head Pointer = 008"
 FREE
 INIT=IOPORT(7) LOC(23 22 21 20 19 18 17 16 15) 000001000B
 CHOICE = "Head Pointer = 009"
 FREE
 INIT=IOPORT(7) LOC(23 22 21 20 19 18 17 16 15) 000001001B
 CHOICE = "Head Pointer = 00A"
 FREE
 INIT=IOPORT(7) LOC(23 22 21 20 19 18 17 16 15) 000001010B
 CHOICE = "Head Pointer = 00B"
 FREE
 INIT=IOPORT(7) LOC(23 22 21 20 19 18 17 16 15) 000001011B
 CHOICE = "Head Pointer = 00C"
 FREE
 INIT=IOPORT(7) LOC(23 22 21 20 19 18 17 16 15) 000001100B
 CHOICE = "Head Pointer = 00D"
 FREE
 INIT=IOPORT(7) LOC(23 22 21 20 19 18 17 16 15) 000001101B
 CHOICE = "Head Pointer = 00E"
 FREE
 INIT=IOPORT(7) LOC(23 22 21 20 19 18 17 16 15) 000001110B
 CHOICE = "Head Pointer = 00F"
 FREE
 INIT=IOPORT(7) LOC(23 22 21 20 19 18 17 16 15) 000001111B
 CHOICE = "Head Pointer = 010"
 FREE
 INIT=IOPORT(7) LOC(23 22 21 20 19 18 17 16 15) 000010000B
 CHOICE = "Head Pointer = 020"
 FREE
 INIT=IOPORT(7) LOC(23 22 21 20 19 18 17 16 15) 000100000B
 CHOICE = "Head Pointer = 030"
 FREE
 INIT=IOPORT(7) LOC(23 22 21 20 19 18 17 16 15) 000110000B
 CHOICE = "Head Pointer = 040"
 FREE
 INIT=IOPORT(7) LOC(23 22 21 20 19 18 17 16 15) 001000000B
 CHOICE = "Head Pointer = 050"
 FREE
 INIT=IOPORT(7) LOC(23 22 21 20 19 18 17 16 15) 001010000B
 CHOICE = "Head Pointer = 060"
 FREE
 INIT=IOPORT(7) LOC(23 22 21 20 19 18 17 16 15) 001100000B
 CHOICE = "Head Pointer = 070"
 FREE
 INIT=IOPORT(7) LOC(23 22 21 20 19 18 17 16 15) 001110000B
 CHOICE = "Head Pointer = 080"
 FREE
 INIT=IOPORT(7) LOC(23 22 21 20 19 18 17 16 15) 010000000B
 CHOICE = "Head Pointer = 090"
 FREE
 INIT=IOPORT(7) LOC(23 22 21 20 19 18 17 16 15) 010010000B
 CHOICE = "Head Pointer = 0A0"
 FREE
 INIT=IOPORT(7) LOC(23 22 21 20 19 18 17 16 15) 010100000B
 CHOICE = "Head Pointer = 0B0"
 FREE
 INIT=IOPORT(7) LOC(23 22 21 20 19 18 17 16 15) 010110000B
 CHOICE = "Head Pointer = 0C0"
 FREE
 INIT=IOPORT(7) LOC(23 22 21 20 19 18 17 16 15) 011000000B

DT200.1 Technical Manual

Page 87 28th October, 1998

 CHOICE = "Head Pointer = 0D0"
 FREE
 INIT=IOPORT(7) LOC(23 22 21 20 19 18 17 16 15) 011010000B
 CHOICE = "Head Pointer = 0E0"
 FREE
 INIT=IOPORT(7) LOC(23 22 21 20 19 18 17 16 15) 011100000B
 CHOICE = "Head Pointer = 0F0"
 FREE
 INIT=IOPORT(7) LOC(23 22 21 20 19 18 17 16 15) 011110000B
 CHOICE = "Head Pointer = 100"
 FREE
 INIT=IOPORT(7) LOC(23 22 21 20 19 18 17 16 15) 100000000B
 CHOICE = "Head Pointer = 140"
 FREE
 INIT=IOPORT(7) LOC(23 22 21 20 19 18 17 16 15) 101000000B
 CHOICE = "Head Pointer = 180"
 FREE
 INIT=IOPORT(7) LOC(23 22 21 20 19 18 17 16 15) 110000000B
 CHOICE = "Head Pointer = 1C0"
 FREE
 INIT=IOPORT(7) LOC(23 22 21 20 19 18 17 16 15) 111000000B

 SUBFUNCTION = "Enable Serial Buffer 0"
 HELP = "This option choose between data acquisition from
 the channel 0 sample data input or timestamp
 counter."
 CHOICE = "Sample"
 FREE
 INIT=IOPORT(8) LOC(0) 1B
 CHOICE = "Timestamp"
 FREE
 INIT=IOPORT(8) LOC(0) 0B

 SUBFUNCTION = "Enable Serial Buffer 1"
 HELP = "This option choose between data acquisition from
 the channel 1 sample data input or timestamp
 counter."
 CHOICE = "Sample"
 FREE
 INIT=IOPORT(8) LOC(1) 1B
 CHOICE = "Timestamp"
 FREE
 INIT=IOPORT(8) LOC(1) 0B

 SUBFUNCTION = "Enable Serial Buffer 2"
 HELP = "This option choose between data acquisition from
 the channel 2 sample data input or timestamp
 counter."
 CHOICE = "Sample"
 FREE
 INIT=IOPORT(8) LOC(2) 1B
 CHOICE = "Timestamp"
 FREE
 INIT=IOPORT(8) LOC(2) 0B

 SUBFUNCTION = "Enable Serial Buffer 3"
 HELP = "This option choose between data acquisition from
 the channel 3 sample data input or timestamp
 counter."
 CHOICE = "Sample"
 FREE

DT200.1 Technical Manual

Page 88 28th October, 1998

 INIT=IOPORT(8) LOC(3) 1B
 CHOICE = "Timestamp"
 FREE
 INIT=IOPORT(8) LOC(3) 0B

 SUBFUNCTION = "Enable Serial Buffer 4"
 HELP = "This option choose between data acquisition from
 the channel 4 sample data input or timestamp
 counter."
 CHOICE = "Sample"
 FREE
 INIT=IOPORT(8) LOC(4) 1B
 CHOICE = "Timestamp"
 FREE
 INIT=IOPORT(8) LOC(4) 0B

 SUBFUNCTION = "Enable Serial Buffer 5"
 HELP = "This option choose between data acquisition from
 the channel 5 sample data input or timestamp
 counter."
 CHOICE = "Sample"
 FREE
 INIT=IOPORT(8) LOC(5) 1B
 CHOICE = "Timestamp"
 FREE
 INIT=IOPORT(8) LOC(5) 0B

DT200.1 Technical Manual

Page 89 28th October, 1998

Functional Overview

Conceptually the system functions as a very deep FIFO. Data is sampled via the 48 bit serial
interface on the positive edge of a clock and stored in a 12MByte VRAM buffer. The buffer wraps
around and can be read out via the EISA interface without stopping the sample clock. The layout is
shown below.

There are nine major pals: EISAIF, STATM, DECODE, CNTCMP, CLOCK, TRIG, TIME0, TIME1
and SMUX, all MACH210-10 devices. There are four minor pals: EISADR, COLS, CLKDR and
IOTR, the first two of which are AmPAL22CEV10H/4 devices, and the last two of which are Lattice
GAL16V8-7 devices.

EISAIF responds to the EISA interface memory and I/O cycles, generating two major select signals,
/EISAMEMCS and /EISAIOCS. It also implements the ADDRMAP register and the top 8bits of the
EISAID register, i.e. EISAID[31..24].

STATM responds is essentially a large state machine that responds to /EISAMEMCS and
/EISAIOCS by stepping through a sequence of states that define the logic levels for all the major
memory and register control signals.

DECODE decodes the low order address signals into register select signals /RESET (RESET
register), /MAPCS (ADDRMAP register), /TRCNFCS (TRIGCONFIG register), /TIMERESET
(TIMERESET register), /TRREGCS (STOPCOUNT register), /HREGCS (HEADPTR register) and
/HIDCS (EISAID register). /TRREGCS and /HIDCS are both activated to select the STATUS register.
It also implements the MODE and OUTPUTENA registers. On a system reset, or a write to the
RESET register, it activates its /RESET output to initialize the board.

CNTCMP contains the stopcount and head pointer counters, and also implements the STATUS
register and EISAID[23..15].

CLOCK accepts the LOCALTRACE and LOCALTRIGGER signals from the TRIG pal, combines
these with EXTRA2-0 and EXTRIG2-0, and generates appropriate clocks for the CNTCMP pal. It
also contains 9bit counters that track the progress of the VRAM sequential access memory (SAM)
pointer, and issue a request to STATM for a VRAM transfer cycle when they roll over from
111111111 to 000000000.

TRIG takes in the 12bit SRAM data and generates LOCALTRACE and LOCALTRIGGER signals as
appropriate. It also implements the TRIGCONFIG register and EISAID[14..0], and provides the data
paths for read and write accesses to the SRAMs.

TIME0 and TIME1 implement the low and high halves of the timestamp counter.

SMUX acts as a general multiplexer and demultiplexer of signals between the internal serial bus
and the VRAM serial data. It also provides the address paths for read and write accesses to the
SRAMs. There are six of these pals, SMUX0-5, handling byte 0-5 of the 48bit serial data.

An ordinary DRAM controller, the DP8431V, is used.

DT200.1 Technical Manual

Page 90 28th October, 1998

DP8431V

XOSC

EISAIF

STATM

DECODE

CNTCMP

CLOCK

TRIG

EISADR

COLS

TIME0

TIME1

SCONN

E
X

T
C

O
N

IOTR

CLKDR

4 2 0

5 3 1

sram
sram

sr
am

2
1

0

sbuf
sbuf

sbuf sbuf
sbuf sbuf

4
5

2
3

0
1

S
M

U
X

4

bu
f 0

bu
f1

bu
f 2

bu
f3

DT200.1 Technical Manual

Page 91 28th October, 1998

3
2

 b
it

 ti
m

e
st

a
m

p
 c

o
u

nt
e

r

6
4k

 x
 4

 S
R

A
M

V
R

A
M

 a
rr

a
y

V
R

A
M

 a
rr

a
y

Tr
ig

g
e

r/
Tr

a
c

e

12
 b

it
 R

a
m

 lo
a

d

re
g

is
te

r

9
b

it
h

e
a

d
 p

tr
21

b
it

 t
a

il
p

tr

sy
n

c

1
6

 b
it

 IS
A

 O
R

32
 b

it
E

IS
A

M
u

x
M

u
x

50
 M

H
z

Se
ria

l I
/F

DT200.1 Technical Manual

Page 92 28th October, 1998

VRAM Logic

The video RAMs used in this project are TC524256AZ-10 devices made by Toshiba. These are 1
Mbit dual port devices, arranged as 512 rows by 512 columns by 4 bits of dynamic random access
memory (DRAM), plus a 512 x 4bit sequential access memory (SAM). The SAM holds the
equivalent of one row of the larger DRAM. As well as the usual DRAM read and write operations,
the device supports high speed serial read and write via the SAM port. It is this serial read/write
capability that is used here to sample (or output) data. The minimum serial cycle time is 30ns
giving a theoretical maximum sample frequency of 33Mhz. In practice, however, a maximum serial
cycle rate of 12.5Mhz is expected, as a result of striping the sampling across four banks of
VRAMs during sampling.

on

serial
in/out

SEQUENTIAL ACCESS
MEMORY

parallel data
in/out512 x 512

DRAM
array

R
O

W
 A

D
D

R
E

SS

COLUMN ADDRESS

Video RAM (VRAM)

The larger DRAM array is dynamic, i.e. data decays to zero over a few milliseconds, so it must be
refreshed periodically. During a refresh cycle only /RAS7 is asserted. There is an on chip refresh
counter that can be used for /CAS-before- /RAS refresh cycles (where the negative transition of
/CAS occurs before the negative transition of /RAS). However, the DP8431V DRAM controller
prohibits such cycles, so /RAS-only refreshing is performed, using the refresh counter on the
DP8431V itself, which at least staggers this across four banks to reduce the peak refresh currents.
The SAM is static, so refreshing is not required. Read and write cycles are similar to those for
other DRAMs except for some timing requirements for the output enable and write enable signals.

The output enable and write enable pins are shared with two other functions, write-per-bit and
data-transfer. Because of this, /DTOE (data-transfer-and-output-enable) must be high at the
negative transition of /RAS during a read cycle, or a false transfer will be initiated. Similarily,

7 Active low signals are represented by the '/' convention e.g. NOT RAS = /RAS.

DT200.1 Technical Manual

Page 93 28th October, 1998

/WBWE (write-per-bit-and-write-enable) must be high at the negative transition of /RAS during a
write cycle, or a write-per-bit cycle will be executed. This means that during normal access cycles,
the negative transition of /DTOE or /WBWE must occur between the negative transitions of /RAS
and /CAS.

IO0..
..IO3

Row ColumnA0..
..A8

Data Out

DT/
OE

READ CYCLE

CAS

RAS

WB/
WE

 Data InIO0..
..IO3

Row ColumnA0..
.A8

WRITE CYCLE

CAS

RAS

Standard access cycles

Transfer cycles are initiated by holding /DTOE low at the negative transition of /RAS. There are
three types of transfer cycle :

(a) During a read transfer, one row of data is copied from RAM to SAM. To start a read
transfer, /DTOE must be low, /SE (serial enable input) must be low, and /WBWE must be
high, all at the negative transition of /RAS.

(b) During a write transfer, one row of data is copied from SAM to RAM. To start a write
transfer, /DTOE, /SE and /WBWE must be low at the negative transition of /RAS.

(c) Pseudo-write transfer cycles are used to switch the serial data lines from output to input.
Thus it is necessary to first perform a pseudo-write transfer cycle before data can be input via
the serial port. The conditions for executing a pseudo-write transfer cycle are the same as for
a write transfer except that /SE (serial enable) must be high at the negative transition of /RAS.

Transfer cycle timing is illustrated below. Note that /SE (not shown) is held low :

A0..
..A8

WB/
WE

WRITE TRANSFER

Row SAM Start

CAS

RAS

DT/
OE

RowA0..
..A8

WB/
WE

READ TRANSFER

SAM Start

CAS

RAS

DT/
OE

Transfer Cycles

DT200.1 Technical Manual

Page 94 28th October, 1998

During transfer cycles, the row address gives the row number to be transferred. The column
address gives the new value of the SAM pointer upon completion of the tranfer cycle. Normally
this would be set to zero each time.

The SAM port operates synchronously with SC, the serial clock input. At every positive transition
of SC, the next word of data is input or output via SIO[3..0]. After 512 such cycles the SAM wraps
around and word 0 is input or output again. In normal use the DRAM port and the SAM port
operate totally independantly, except during transfer operations when data cannot be read from or
written to either port. Refresh cycles are also prohibited during transfers.

Some initialisation operations are necessary before the VRAMs can be used :

(a) Before data can be read in via the SAM, a pseudo write transfer operation must be executed.
This need only be done once if SIO[3..0] stay in input mode.

(b) On power- ON, each VRAM must undergo at least 8 transfer cycles of any type to initialise
the transfer gate.

(c) At least 8 serial clock cycles must also be performed on power- ON to initialise the SAM.

These are programmed into the INIT equation in the STATM pal.

Bank Multiplexing

Because the sequential part of the Video RAMs only holds 512 x 4bit words, a transfer cycle must
be executed for every 512 samples. A transfer cycle takes the same amount of time as an ordinary
read or write cycle, so to avoid loss of data the VRAM is arranged in banks. For simplicity, let us
describe an arrangement when sampling data for two banks, bearing in mind that the board is
actually quadruply multiplexed, and can output data as well as capture input samples. While one
bank is sampling data, the other bank can transfer the samples accepted during the previous 512
cycles of the serial clock. Every 512 cycles the serial data path is switched back and forth from one
bank to the other, with each new transfer into successive rows of DRAM.

DT200.1 Technical Manual

Page 95 28th October, 1998

transfer

BUFFERS

transfer

512
cycles

BUFFERS
512

cycles

Data Acquisition Scheme with two VRAM banks

Multiplexing the serial lines is achieved by switching the serial clock between the two banks every
512 cycles of the sample counter. The counter itself is a 9bit synchronous counter contained in the
CLOCK pal, that tracks the progress of the SAM pointer by counting the cycles left before a
transfer (and a bank switch) is needed. The switch from one bank to the other must be
accomplished as fast as possible if there is to be no loss of data when sampling at frequencies
approaching 50Mhz.

The CLOCK pal also contains the serial clock switcher. This multiplexes the serial clock signal to
the banks of VRAM so that only one bank can sample at a time. Hence there is one serial clock
output for each bank. The SAM port samples every positive transition of its SC, so the switching is
done on the negative transition between cycles 511 and 0. In this way, loss of data through late
switching is avoided.

Two pals, CNTCMP and COLS, are situated between the EISA bus address and the DRAM
controller row and column inputs. During normal read or write cycles the EISA bus address is
routed through to the DRAM controller address inputs. In a transfer cycle, however, the transfer
must be performed on the row given by the sample counter (in the CNTCMP pal). For this reason,
during a transfer cycle, these bits of the counter are routed through the CNTCMP pal to the DRAM
controller address inputs, and zeroes are routed through the COLS pal to reset the SAM pointer to
zero.

DT200.1 Technical Manual

Page 96 28th October, 1998

All counter logic is qualified by two signals, /RESET and /PAUSE. /RESET asynchronously resets
the counter to zero and /PAUSE temporarily halts the count and disables the serial clock SC to both
banks.

VRAM Address Multiplexing

Addressing of the VRAMs is controlled by the IOTR (Input/Output & TRansfer) pal. Among the
inputs to this are LA14 to select the bank during an access, TRFBANK to select the bank during a
transfer and LA2 to select the upper or lower half of a sample. Inputs B0 and B1 to the DRAM
controller select which of four /RAS signals is to be activated; these divide the VRAM array into
four blocks of 24 VRAMs.

Each block of 24 is divided into two banks of 12 (twelve of the 4bit VRAM serial I/O ports
corresponds to the 48bit sample width), which is further divided into two halves (4 upper and 8
lower). /RAS and /CAS are activated for both halves (upper 16 and lower 32) and both banks. The
data from the VRAMs is multiplexed using their output-enable (/DTOE) and write-enable (/WBWE)
inputs. There are eight outputs from the IOTR pal devoted to controlling these signals to the array
(two signals { /DTOE and /WBWE} times two banks times two halves equals eight).

IOTR GAL
Upper 16 bits

Lower 32 bits

WB/WE
&

DT/OE
lines

RAS lines from 8431V

During a transfer operation both upper and lower signals are activated, so two cycle definition
signals, ACC[1..0], are also used to control this, as well as the current bank (H14 from the CLOCK
pal).

To summarise then, the outputs of the IOTR pal are as follows :

(a) /DTOEB0UPR16 (/DTOE Bank0 upper16), /DTOEB1UPR16, /DTOEB0LWR32 and
/DTOEB1LWR32 to the VRAMs.

(b) /WBWEB0UPR16 (/WBWE Bank0 upper16), /WBWEB1UPR16, /WBWEB0LWR32 and
/WBWEB1LWR32 to the VRAMs.

DT200.1 Technical Manual

Page 97 28th October, 1998

VRAM Serial Enables

During any memory cycle, one of four /RAS lines is always strobed. This means that during every
cycle at least 24 VRAMs will undergo a memory cycle, regardless of the intended cycle type or the
target selection of VRAMs. The type of cycle is determined by three other signals, /DTOE ,
/WBWE and /SE. The first two signals have previously been described. The third, the serial enable,
/SE, is controlled by the CLOCK pal.

CLOCK has eight outputs that connect to the /SE input of eight groups of twelve VRAMS. At any
given instant only two outputs will be active. The first corresponds to the group of twelve that is
actively sampling, and the second corresponds to the group of twelve that was sampling during the
previous 512 cycles (which just executed, or is in the process of executing, a transfer cycle).

After 512 x 2 transfer cycles (each VRAM has 512 rows and there are 2 banks), new transfer
cycles must be performed on a new set of VRAMs. At this point CLOCK should deactivate those
/SE outputs it had activated above, so that each transfer cycle is executed by the correct block of
twelve VRAMs. The sequence that must be followed is illustrated below.

Bank 0 Bank 1

After transfer :
 SE Bank1 shifts up,
Bank 0 is sampling,
Bank 1 is idle.

21 Switch : Row 511,
Bank 0 is sampling,
Bank 1 is transferring.

Bank 0 Bank 1

Black filled boxes represent VRAMs whose /SE is active. The left diagram illustrates the situation
immediately following a bank switch on row 511 (i.e. the last row in a block of VRAMs). On
completion of the transfer cycle, the /SE for the next block upwards on bank 1 is activated, as
shown in the right diagram, so that it is ready to accept data upon the next bank switch.

DT200.1 Technical Manual

Page 98 28th October, 1998

Bank 0 Bank 1

3 Switch : Row 511, -> Row 0
Bank 0 is sampling,
Bank 1 is transferring.

Bank 0 Bank 1

4 After transfer:
 SE Bank0 shifts up,
Bank 0 is idle,
Bank 1 is sampling.

After the next 512 serial clock cycles the row count rolls over to zero and the serial data path is
switched to bank 1, as in the left diagram above. Bank 1 is now accepting new samples while a
transfer cycle is copying the SAM data on bank 0. After this transfer cycle, the /SE for the next
block upwards on bank 0 is activated, as shown in the right diagram above, so that it is ready to
accept data upon the next bank switch, and leaving it "level" with the /SE on bank 1.

The SMUX pals isolate each VRAM bank's serial data from the 48bit internal serial bus, routing
through the appropriate data paths in synchronism with the serial clock. The /SE signal also acts as
an output enable for the SAM ports when the SAM is switched to output data, in which case the
SMUX pals route the data in the reverse direction.

Write-per-bit Write Mask

If /WBWE is low at the negative transition of /RAS during both ordinary write or write transfer
cycles, then the data on the DRAM ports is interpreted as a write mask. The write is then only
performed for those bits for which the corresponding mask bit is a logical 1. The write mask is
valid for only one cycle.

For ordinary write cycles, the STATM pal forces /WBWE high (by deactivating /DTOEWBWE) at
the negative transition of /RAS to disable the write mask. However, for write transfer cycles
/WBWE must be low at the negative transition of /RAS to indicate the transfer direction, so the
write mask will always be enabled for these cycles; in this case the data on the DRAM ports is
pulled to a logical 1 by a set of pullup resistors. For convenience, the assignment of signals to
pullup resistors is shown below :

pullup0 pullup1 pullup2 pullup3 pullup4
r1 HD0 HD8 HD16 HD24 HSAB
r2 HD1 HD9 HD17 HD25 HSBA
r3 HD2 HD10 HD18 HD26 /ECAS0
r4 HD3 HD11 HD19 HD27 /TIMERESTOC
r5 HD4 HD12 HD20 HD28 SBUFSAB
r6 HD5 HD13 HD21 HD29 SBUFSBA

DT200.1 Technical Manual

Page 99 28th October, 1998

r7 HD6 HD14 HD22 HD30 /PAUSEOC
r8 HD7 HD15 HD23 HD31 /SYNC

State Machine

Amongst other things, the STATM pal performs the following functions :

(a) Arbitration between memory requests according to priority.

(b) Sequencing of signals to the VRAM array and DRAM controller.

(c) Generation of /HSTB , which is used to generate EXRDY for the EISA interface.

The state machine has four basic states, corresponding to the four types of memory cycle that can
be performed on the array : IDLE_IO, TRANSFER, ACCESS and REFRESH. It is implemented as a
4bit Gray-coded sequencer, where each of the sixteen possible states is decoded to allow output
signals to be activated at different stages during the cycle. Each cycle is thus a maximum of sixteen
clock periods long (16 x 40ns = 640ns). The zero state is decoded as SWITCH; when in this state
the state machine switches state according to the priority REFRESH > TRANSFER > ACCESS >
IDLE_IO. Two cycle definition signals, ACC[1..0], are output from the STATM pal to indicate the
cycle type. The four defined cycle types are encoded inside the STATM pal according to the table
below. ACC[0] is then modified for external use by driving it to a logic 1 during the SWITCH state,
thereby indicating the ACCESS state, which results in earlier decoding of EISA memory cycles in
the DECODE pal.

acc[0]acc[1]
IDLE_IO
ACCESS

TRANSFER
REFRESH

0

1

0
1
0
1

0
1

IDLE_IO cycles are inserted whenever there are no requests pending, or when EISA I/O register
accesses are taking place. /RAS and /CAS remain inactive. Instead STATM generates a data strobe,
/DS, for I/O cycles. If another type of cycle is in progress when an I/O cycle is requested by the
EISA interface (which presents the address then activates the /START signal), then the STATM pal
activates /HSTB, which is used by the EISADR pal to deactivate EXRDY for the EISA interface,
thereby forcing the EISA interface to wait. Once the IDLE_IO cycle begins, then EXRDY is
reactivated so that the EISA cycle will complete.

Note that accesses to the SRAMs use the memory address space, not I/O space. Since this is only
enabled when the SRAMLD bit of the MODE register is set, this bit is used by STATM and other
pals to treat these accesses as I/O cycles, using /DS.

TRANSFER cycles are performed every 512 cycles of the sample clock according to the counter
output A13 from the CLOCK pal. On receiving a negative transition on A13, the data-transfer-
request flip flop DTREQ within the STATM pal is set, indicating that a transfer cycle is required.
At the start of the transfer cycle the IOTR pal is notified, after which the /RASIN (the row-address-
strobe input of the DRAM controller) is activated. This ensures that /DTOE and/or /WBWE are
active at the negative transition of /RAS, so starting a transfer cycle rather than a read/write cycle.

DT200.1 Technical Manual

Page 100 28th October, 1998

After a number of clock cycles, /RASIN is deactivated and the transfer ends. During this time the
sample count is routed through to the VRAM address inputs.

ACCESS cycles are more straightforward. The cycle is requested by the EISA interface, which
presents the address then activates the /START signal. This results in the activation of the
/EISAMEMCS output by the EISAIF pal. /RASIN is asserted early in the cycle, as with a transfer
cycle, but this time notification to the IOTR pal is delayed so that the negative transition of /DTOE
and/or /WBWE occurs in between the negative transitions of /RAS and /CAS. If the DRAM
controller activates its /DTACK output (to indicate a refresh cycle is in progress), then the STATM
pal activates /HSTB, which is used by the EISADR pal to deactivate EXRDY for the EISA interface,
thereby forcing the EISA interface to wait. When /DTACK is deactivated then EXRDY is activated
so that the cycle will complete.

REFRESH cycles occur every 16µs according to an internal refresh clock generated within the
DRAM controller by a division of its CLK input. Every 16µs the DRAM controller activates its
refresh request signal, RFRQ. The next cycle performed by the state machine will then be a
REFRESH cycle. During the whole of this cycle, the STATM pal will activate the RFSH input of the
DRAM controller. The DRAM controller looks after the rest, routing the contents of its internal
refresh counter onto the VRAM address inputs.

The state transition diagram for the state machine is shown below :

SWITCH
st0

st1

st2

st3

st4

st5

st6 st7 st8

st9

stA

stB

stC

stD

stEstF hiocs*idle_io
+ hmemcs*access
+ rfrq*refresh
+ trfreq*transfer

 idle_io
+ dtack*access
+ refresh
+ transfer

access*/dtack

 refresh
+ transfer*dtack

 idle_io
+ access
+ transfer*/dtack

 /idle_io
+ /access

default

DT200.1 Technical Manual

Page 101 28th October, 1998

DRAM Controller Initialization

On system reset, or a write to the RESET register, the DECODE pal activates its /RESET output to
initialize the board. Amongst other things, this connects to the DRAM conroller mode load input,
/ML, which causes it to load its operating mode from its B1 and B0, /ECAS0, /CS, R9-0 and C9-0
inputs, which various other pals set to the following logic levels while /RESET is active :

signal value mode
B0 0 /ADS clocks address latches
B1 1 access mode 1

/ADS starts /RAS3-0
/AREQ ends /RAS3-0

/ECAS0 1 /CAS3-0 follows /ECAS3-0
external refresh with /RFRQ (not /WE)

/CS 1 << THERE IS A PROBLEM HERE ? >>
/CS is not deliberately disabled during mode
loading (nor is /AREQ or /ADS).

C9 0 /CAS3-0 are same for reads and writes
C8 1 row address hold time = 15nS
C7 1 column address hold time = 0nS
C6 1 each combination of B1 and B0 activates
C5 1 one of /RAS3-0 and /CAS3-0, i.e. /RAS0
C4 1 and /CAS0, /RAS1 and /CAS1, etc.
C3 0 refresh clock = DELCLK / 360
C2 1
C1 0
C0 0
R9 1 staggered refresh
R8 1 no address pipelining
R7 1 /DTACK generated (not /WAIT)
R6 0 /DTACK delayed by one CLK by /WAITIN=0
R5 0 no wait states
R4 0 /DTACK remains activated during bursts
R3 0 no wait states
R2 0 /DTACK remains activated when /RAS is
R1 1 /RAS activated during refresh for 4 CLKs
R0 1 /RAS precharge time = 3 CLKs

DT200.1 Technical Manual

Page 102 28th October, 1998

VRAM Layout

The above descriptions give a simplistic view of the VRAM structures. These are systematic but
can be confusing without further explanation. The trace samples are stored in the subbanks as
shown below :

B
an

k
0

B
an

k
1

Su
b

B
an

k
0

Su
b

B
an

k
0

Su
b

B
an

k
1

Su
b

B
an

k
1

Su
b

B
an

k
2

Su
b

B
an

k
2

Su
b

B
an

k
3

Su
b

B
an

k
3

Sa
m

pl
e

0,
 S

am
pl

e
4,

 …
,

Sa
m

pl
e

20
44

.

Sa
m

pl
e

1,
 S

am
pl

e
5,

 …
,

Sa
m

pl
e

20
45

Sa
m

pl
e

2,
 S

am
pl

e
6,

 …
, S

am
pl

e
20

46

Sa
m

pl
e

3,
 S

am
pl

e
7,

 …
, S

am
pl

e
20

47
Sa

m
pl

e
20

51
, S

am
pl

e
20

55
, …

, S
am

pl
e

40
95

Sa
m

pl
e

20
50

, S
am

pl
e

20
54

, …
, S

am
pl

e
40

94

Sa
m

pl
e

20
49

, S
am

pl
e

20
53

, …
, S

am
pl

e
40

93

Sa
m

pl
e

20
48

, S
am

pl
e

20
52

, …
, S

am
pl

e
40

92

DT200.1 Technical Manual

Page 103 28th October, 1998

Each VRAM sub-bank is effectively as follows :

Bit 44..47

Bit 4..7

Bit 0..3

Thus the rows, banks, columns and sub-banks are selected as follows :

0234513141523

Row select

Bank select

Column select

Sub-bank select

Head Transfer Pointer Register

DT200.1 Technical Manual

Page 104 28th October, 1998

Therefore the samples are distributed amongst the sub-banks as tabulated below :

Sa
m

pl
e

#
Su

b
B

an
k

0
Su

b
B

an
k

1
Su

b
B

an
k

2
Su

b
B

an
k

3
0

0
00

00
1

00
08

2
00

10
3

00
18

1
4

00
20

5
00

28
6

00
30

7
00

38

R
ow

 0
(B

an
k

0)
2

8
00

40
9

00
48

10
00

50
11

00
58

(8
K

b)
...

...
...

...
...

...
...

...
...

51
0

20
40

3F
C

0
20

41
3F

C
8

20
42

3F
D

0
20

43
3F

D
8

51
1

20
44

3F
E

0
20

45
3F

E
8

20
46

3F
F

0
20

47
3F

F
8

0
20

48
40

00
20

49
40

08
20

50
40

10
20

51
40

18

R
ow

 0
(B

an
k

1)
...

...
...

...
...

...
...

...
...

51
1

40
92

7F
E

0
40

93
7F

E
8

40
94

7F
F

0
40

95
7F

F
8

0
40

96
80

00
40

97
80

08
40

98
80

10
40

99
80

18

R
ow

1(
B

an
k

0)
...

...
...

...
...

...
...

...
...

51
1

61
40

B
F

E
0

61
41

B
F

E
8

61
42

B
F

F
0

61
43

B
F

F
8

0
61

44
C

00
0

61
45

C
00

8
61

46
C

01
0

61
47

C
01

8

R
ow

1(
B

an
k

1)
...

...
...

...
...

...
...

...
...

R
ow

 5
11

(B
an

k
0)

FF
80
00
-F
FB
FF
F

R
ow

 5
11

(B
an

k
1)

FF
C

00
0-

FF
FF

FF

DT200.1 Technical Manual

Page 105 28th October, 1998

The serial data is connected from the SMUX pals to the VRAMs as follows :

48
 (S

D
0A

 ..
 S

D
47

A
)

4
M

SB
s

4
4

4
4

4
4

4
4

4
4

4
 L

SB
s

48
 (S

D
0B

 ..
 S

D
47

B
)

fr
om

 S
M

U
X

s
(B

)

fr
om

 S
M

U
X

s
(A

)

B

A

 9

 8

 7

 6

 5

 4

 3

 2

 1

 0

Bank1 Subbank2 (210)

Bank0 Subbank2 (200)

Bank1 Subbank0 (010)

Bank0 Subbank0 (000)

Bank1 Subbank3 (310)

Bank0 Subbank3 (300)

Bank1 Subbank1 (110)

Bank0 Subbank1 (100)

4
M

SB
s

4
4

4
4

4
4

4
4

4
4

4
 L

SB
s

DT200.1 Technical Manual

Page 106 28th October, 1998

Trigger/Trace and Timestamp Logic

The sample data signals at the SCONN connector at the right edge of the board are buffered via
SN74AS646N buffers SBUF0-5, whence they connect to the SMUX pals and the VRAMs as
described directly above. The trigger/trace patterns are stored in SRAMs; the address inputs of
these are fed with the buffered sample data as shown in the diagram below. The diagram also
shows how the timestamp counter can be substituted for the buffered data, one byte at a time; if
any of SBUFENA[5..0] are at a logical 1 then the appropriate sample data buffer is enabled,
otherwise the appropriate timestamp output buffer is enabled, the lower three bytes via the TIME0
pal and the upper three bytes via TIME1.

32
 b

it
tim

e
st

am
p

 c
ou

nt
e

r

64
k

x
4

SR
A

M

V
RA

M
 a

rr
ay

V
RA

M
 a

rr
ay

D
a

ta
 in

/o
ut

Tr
ig

g
e

r/
Tr

a
ce

12
 b

it
Ra

m
 lo

a
d

 r
e

g
is

te
r

9
b

it
he

ad
 p

tr
21

b
it

ta
il

p
tr

sy
nc

16
 b

it
IS

A
 O

R
32

 b
it

EI
SA

M
u

x
M

u
x

6
x

SM
UX

 (
M

A
C

H
21

0)

TR
IG

 (
M

A
C

H
21

0)

DT200.1 Technical Manual

Page 107 28th October, 1998

The trigger and trace logic of the TRIG pal is shown below.

16 16 16

64
kx

4

64
kx

4

64
kx

4a0..a15

d0..d3 d0..d3 d0..d3

a0..a15 a0..a15

Register Register Register

48S
am

pl
e

D
at

a

LATCH LATCH LATCH LATCH

Tr
ig

ge
rIm

m
ed

ia
te

ly

Lo
ca

lT
rig

ge
r

Lo
ca

lT
ra

ce

Tr
ac

eC
on

tin
uo

us
ly

TR
IG

C
O

N
FI

G
[0

]

TR
IG

C
O

N
FI

G
[1

]

TR
IG

C
O

N
FI

G
[2

]

TR
IG

C
O

N
FI

G
[3

]

The sample data is connected to the address lines of SRAM0, SRAM1 and SRAM2. A triplet of data
bits from each SRAM (e.g. d0 on SRAM0 & SRAM1 & SRAM2) is called a trace channel and is
individually selectable to be a trigger (if trigger value is matched, stop sampling when
STOPCOUNT register reaches zero) or a trace (store sample only if trace value is matched).

Channels are selected as trace or trigger by writing the TRIGCONFIG register. Bits [3..0] of this
register individually select the four trace channels as trigger (if set to one) or trace (if reset to zero).
The TRACE CONTINOUSLY bit forces acceptance of every sample. The TRIGGER
IMMEDIATELY bit forces the STOPCOUNT to begin counting down immediately.

DT200.1 Technical Manual

Page 108 28th October, 1998

To read or write the SRAM, first the SRAMLD bit of the MODE register must be set, and the
RECORD bit must be reset. This disables sampling and maps the SRAM into the lower 128k of the
EISA memory address space. Usually PAUSE would also be set. All three SRAMs are read/written
together. The EISA address is buffered in triplicate onto the sample data path (via the SMUX pals)
and the SRAM0 data is buffered to/from EISA D[3..0], SRAM1 to/from EISA D[7..4] and SRAM2
to/from EISA D[11..9], all via the TRIG pal.

The CLOCK pal accepts the LOCALTRACE and LOCALTRIGGER signals from the TRIG pal,
combines these with EXTRA2-0 and EXTRIG2-0, and generates appropriate clocks for the
CNTCMP pal. It also contains 9bit counters that track the progress of the VRAM sequential access
memory (SAM) pointer, and issue a request to STATM for a VRAM transfer cycle when they roll
over from 111111111 to 000000000.

Sample Data Input

The pinout for the SCONN connector at the right edge of the board (from the component side) is as
follows :

towards EXTCONN

SCLOCKIN NC
GND GND

D23 D47
GND GND

D22 D46
GND GND

D21 D45
GND GND

D20 D44
GND GND

D19 D43
GND GND

D18 D42
GND GND

D17 D41
GND GND

D16 D40
GND GND

D15 D39
GND GND

D14 D38
GND GND

D13 D37
GND GND

D12 D36
GND GND

D11 D35
GND GND

DT200.1 Technical Manual

Page 109 28th October, 1998

D10 D34
GND GND

D9 D33
GND GND

D8 D32
GND GND

D7 D31
GND GND

D6 D30
GND GND

D5 D29
GND GND

D4 D28
GND GND

D3 D27
GND GND

D2 D26
GND GND

D1 D25
GND GND

D0 D24
GND GND

towards EISA connector

All signals are terminated via 22? series resistors.

When sampling data, it is imperative that there are no false clock transitions, so the sample clock
SCLOCKIN is timed in a latch that inhibits spurious clock transitions for a small interval of time
after each incident clock transition, i.e. it enables the DT200.1 to respond only to the incident wave
of the SCLOCKIN input signal. This latch circuit is implemented in the CLKDR pal.

Width Expansion

The pinout for the EXTCON connector at the top of the board is as follows (from the component
side) :

towards VRAM

/SYNC 1 20 GND
/PAUSEOC 2 19 GND

/CSYNC 3 18 GND
/EXTRAC2 4 17 GND
/EXTRAC1 5 16 GND
/EXTRAC0 6 15 GND

/RESET 7 14 GND
/EXTRIG2 8 13 GND
/EXTRIG1 9 12 GND
/EXTRIG0 10 11 GND

DT200.1 Technical Manual

Page 110 28th October, 1998

towards SCONN

/EXTRIG0-2, /RESET, /EXTRAC0-2 and /CSYNC are terminated via 22? series resistors, while
/PAUSEOC and /SYNC are terminated to 4.7k ? pullup resistors. The internal end of the 22? series
resistor via which /RESET terminates is also connected to a 4.7k ? pullup resistor.

Pin /PAUSEOC is wired to pin /CSYNC. This appears to be an error.

The triggering, etc. may be extended across up to four boards by connecting a 20-way flat cable
across each EXTCON connector :

board 0 board 1 board 2 board 3
/SYNC /SYNC /SYNC /SYNC /SYNC

/PAUSEOC /PAUSEOC /PAUSEOC /PAUSEOC /PAUSEOC
/CSYNC /CSYNC /CSYNC /CSYNC /CSYNC

/EXTRAC2 /TRAC2 /TRAC2 /TRAC2 /TRAC2
/EXTRAC1 /TRAC2 /TRAC1 /TRAC1 /TRAC1
/EXTRAC0 /TRAC0 /TRAC0 /TRAC0 /TRAC0

/RESET /RESET /RESET /RESET /RESET
/EXTRIG2 /TRIG2 /TRIG2 /TRIG2 /TRIG2
/EXTRIG1 /TRIG1 /TRIG1 /TRIG1 /TRIG1
/EXTRIG0 /TRIG0 /TRIG0 /TRIG0 /TRIG0

where : /TRAC0 == /LOCALTRACE from board 0
/TRIG0 == /LOCALTRIGGER from board 0

Thus at all but one board, / EXTRAC0-2 and /EXTRIG0-2 are used to output the / LOCALTRACE
and /LOCALTRIGGER from that board, whereas on one board / EXTRA2-0 and /EXTRIG2-0 are
used to input the equivalent signals from the other boards.

The ADDRMAP register must be set to a unique base address for each board. The triggering
requirements, etc., must then be distributed across the boards.

Depth Expansion

The DT200.1 is designed to allow interleaving of boards to increase the buffer depth in multiples
of two million, and to proportionately increase the sample rate. This requires external
preprocessing of the sample clock to stagger individual SCLOCKIN signals across the boards.

The ADDRMAP register must be set to a unique base address for each board. The other register
and SRAM settings must then be duplicated across the boards.

Electrical Characteristics

minimum logical 1 input voltage 2.0 Volts
maximum logical 1 input voltage 5.5 Volts
minimum logical 0 input voltage -0.5 Volts
maximum logical 0 input voltage 0.8 Volts

capacitive loading per input under test TBD

DT200.1 Technical Manual

Page 111 28th October, 1998

minimum SCLOCKIN frequency 0 Hz
maximum SCLOCKIN frequency 50 MHz
minimum SCLOCKIN logical 0 duration 5 nS
minimum SCLOCKIN logical 1 duration 5 nS
SD[0..47] setup time relative to SCLOCKIN positive transition 5 nS
SD[0..47] hold time relative to SCLOCKIN positive transition 1 nS

supply current TBD

DT200.1 Technical Manual

Page 112 28th October, 1998

Parts List

The parts list is :

Part No Supplier Description Quantity
DT2001 Exacta PCB 1
DP8431V-33 STC 873795E DRAM Controller 1
TC524256AZ-10 STC VRAM 96
MCM6208C Motorola 64k x4 SRAM 3
SN74AS646N STC 405697F 8bit bidirectional

registers/buffers
10

Lattice GAL16V8-7 STC 403938C PAL 2
AmPAL22CEV10H/4 STC 403521R PAL 2
MACH210-12JC STC 403544F GAL 14
HM050H00 STC 015265C 50MHz Crystal

oscillator
1

Bourns 4308R-102-22R STC 001467B 22? 8pin SIP separate
resistor pack

14

Bourns 4309R-101-4K7 STC 045827C 4k7 9pin SIP common
resistor pack

11

Philips M-RS16-22K STC 022296E 22k? 400mW resistor 3
Philips M-RS16-3K3 STC 022276B 3k3? 400mW resistor 4
Philips M-RS16-22R STC 022312D 22? 400mW resistor 4
749076-9 AMP 100pin Cable socket 1
749111-8 AMP 100pin Cable plug 1
AVX Kyocera TAP10 STC 032904A 4.7µF tantalum

capacitor
3

AVX Kyocera
SR20 2F4 100nF

STC 016910E 0.1µF Reset timer
capacitor

1

1PGAUAQ05Z Rogers Mektron Transmission line
capacitor

19

Philips CZ15A103K STC 407207R 0.01µF monolithic
capacitor

40

Kemet C410X7R-10000 STC 091798F 0.01µF axial bypass
capacitor

28

037752R STC 037752R 20 Pin DIL sockets 2
037753G STC 037753G 24 Pin DIL sockets 15
067628R STC 067628R 44pin PLCC socket 14
067630X STC 067630X 68pin PLCC socket 1

Note that boards 1 and 2 use Mitsubishi M5M442256AL-8 (STC 400999C) VRAMs rather than
Toshiba TC524256AZ-10 VRAMs. Micron MT5C2564 SRAMs are a suitable alternative to the
Motorola MCM6208C.

Deep Trace DT200.1

Patch List

1. Surface Wire Patches

<REFER TO PATCH LOCATIONS DIAGRAM>

1.1 Connect the long trace at the top of each array of 48 VRAMs to Ground (Patch A) . This is
necessary to ensure that Transfer cycless occur correctly. This line is marked NC in most
VRAMs but the Mitsubishi M5M442256AL VRAMs use this line for special functions.

1.2 Connect the / ECAS lines on the DRAM controller to the / RAS lines on the DRAM controller
(Patch B) It is only necessary to do this for / ECAS[3..1]. /ECAS[0] is connected by an
internal trace. This patch also requires an internal trace to be cut (see Internal Trace
Patches).

1.3 Connect CAB to SAB on each of the SN74AS646N latching buffers (Patch C).

1.4 Connect pins 56 (CLK) and 57 (DELCLK) on the DRAM controller (Patch D) to pin 13
(SYSCLK) on the EISAIF pal.

1.5 Connect the D1 line between VRAM no. XXX and VRAM no. YYY as per Patch E. This is a
missing net in the file VRAM96.NET.

1.6 Terminate the clock line input on pin 1 of the CLKDR pal using 220? pullup and 330?
pulldown (Patch F).

1.7 Cut the trace on the solder side of the board as shown for Patch G. This accidentally
connects a data line to an IRQ line on the EISA bus.

1.8 Connect pin 11 to pin 12 on each of the SRAMs (Patch H). This i s a missing net for the
SRAM /E input in the file CORE.NET, which needs to be taken to logic 0.

1.9 Connect CBA to SBA on each of the SN74AS646N latching buffers (Patch I). This is needed
to enable transparent operation of the buffers during writes so that the VRAM /DTWBC
signal latches valid write data early in the memory cycle.

1.10 Connect the /ADDLATCH signal from the DECODE pal to the CNTCMP pal (Patch J).

1.11 Connect the H14 signal from the CLOCK pal to the STATM pal (Patch K).

1.12 Connect a 4.7k? resistor between pins 60 (/WAITIN) and 55 (VCC) on the DRAM controller
(Patch L).

1.13 Connect pin 23 (A3) of any VRAM to pin 83 (Q3) on the DRAM controller (Patch M).

Patch List

Page 114 28th October, 1998

1.14 Connect the /INIT signal from the CLOCK pal to pin 11 of the IOTR pal.

Patch List

Page 115 28th October, 1998

2. Internal Trace Patches

This is easier than it sounds. You just have to dig a tiny hole on the surface of the board and break
the internal trace. It is most easily accomplished using a Stanley knife with a new blade. Be careful
not to apply too much pressure or cut through to the power planes. The locations of the internal
trace cuts are shown in two diagrams.

2.1 Solder-side cuts (see Solder-side-cut Diagram). These cuts are necessary to shorten the
length of WB/WE and DT/OE traces on the VRAM array.

2.2 Component-side cuts (see Component-side-cut Diagram). These cuts are necessary to break
traces connecting the ECAS[3..0] lines to ground. Because these cuts are situated underneath
the DRAM controller they have to be accomplished before the PLCC sockets are attached to
the board.

2.3 Component-side cuts (see Component-side-cut Diagram). This cut is necessary to break a
trace connecting the EXTCON./PAUSEOC pin to the EXTCON./CSYNC pin.

3. Remaining Problems

3.1 New power- ON reset initializes the DRAM controller, but has not been checked thoroughly.

3.2 The DRAM R1 input appears to remain at logic 0 during DRAM initialization, even though
it should be logic 1. This should be investigated. Note that during the initialization, the /CS,
/ADS and /AREQ signals are not deliberately disabled - this implies that the reset is " /CS-
programmed".

3.3 The GLOBAL reset may need to be changed in the STATM pal to ensure the power- ON reset
is long enough. At the present the flip-flop that generates it is asynchronously reset by it, so
only a very short pulse will be generated.

3.4 For some reason, /EISAIOCS is activated for one 25MHz cycle during EISA refresh, even
though the equation for is deliberately equated to logic 0. There may be crosstalk problems,
or an internal wiring short.

3.5 EISA bursts are disabled in the STATM pal.

3.6 The MODE bits DMAENA and IRQENA are not implemented yet, nor is any of the DMA
logic.

3.7 One of the pullup packages is still missing from board 2.

3.8 There may be a wiring error within the boards, since EXTER1.R3B is shown in the netlist
(which is probably out of date) as connected to both /PAUSEOC and /SYNC. The wiring
diagrams should be checked.

3.9 It is still unclear whether there is a SERIOUS problem with turn-around of the VRAM
SAM buffers during serial transfers. When /RECORD is toggled, the STATM pal responds by
doing a pseudo-write cycle to turn around the buffers, but this only works for the currently
selected VRAMs. What about the other VRAMs that will become selected as the sampling
proceeds ?

Patch List

Page 116 28th October, 1998

4. Major Recent Fixes

4.1 3-APR-1998 : added comments to the pal source files, which were completely without
comments.

4.2 3-APR-1998 : fixed irregular failure to boot due to lack of power- ON reset of the DRAM
controller, by changing the EISADR pal to generate an abnormal pattern on /WR and
/ADDLATCH whenever RESDRV=1, and changing the DECODE pal to recognize this and
activate /BOARDRESET (which drives /RESET, which drives the DRAM input /ML).
Probably the boot was very system-sensitive before this, since some systems may scan all of
memory during boot and on finding the trace board would get no EXRDY and then wait
forever.

4.3 3-APR-1998 : /EISAIOCS remained active after /CMD was deactivated, due to a latching
"bridge" term DELCS in the /EISAIOCS equation in the EISAIF pal - this term bridges any
gap between deactivation of /START and activation of /CMD. This was fixed by adding the
NOST1 and NOST2 to recognize the end of /START, then limiting DELCS to 2 cycles after
that.

4.4 9-APR-1998 : fixed system-sensitivity of write data latching on the cd[31..0] local bus,
caused by a CBA positive transition before the EISA data became valid - this only happened
for systems that generate valid EISA write data later than usual. Fixed by delaying the CBA
positive transition by adding "+s2+s3" to the equation (in the STATM pal) for OUTCLK,
which drives CBA.

4.5 9-APR-1998 : connected SBA to CBA on all the EISA buffers, so that when CBA=0, the
buffers pass data transparently from the EISA bus to cd[31..0], instead of only generating
the latched write data after the CBA positive transition. This ensures the write data is passed
to the VRAMs as early as possible.

4.6 28-APR-1998 : properly implemented the ADDRMAP register.

4.7 29-APR-1998 : changed the STATM state machine conditions to qualify them by the select
inputs, so that a spurious select would cause a default branch back to SWITCH. This
dramatically improved the stability of the state machine. Also qualified other signals
accordingly.

4.8 17-MAY-1998 : changed the timing of /DTWBC for writes by delaying its activation in the
STATM pal from st2 to st3, since its negative transition (which clocks write data into the
VRAMs) was occuring before the write data was valid.

4.9 19-MAY-1998 : connected the SRAM /E inputs to GND (logic 0) to allow them to be
accessed.

4.10 27-MAY-1998 : fixed up the triggering and tracing equations in the TRIG pal.

4.11 27-MAY-1998 : added the CONTINUOUS TRACE and IMMEDIATE TRIGGER functions to
the TRIG pal.

Patch List

Page 117 28th October, 1998

4.12 28-MAY-1998 : added the STATUS register by decoding both /TRREGCS and /HIDCS for
address 0xZ020, and activating DONE on bit 15 for a read, where DONE is the
STOPCOUNT signal TEND.

4.13 31-MAY-1998 : added the EISA identifier 'DTR200.1' to EISAIF, CNTCMP and TRIG
pals.

4.14 2-JUN-1998 : added the EISA configuration file !DTR2001.CFG.

4.15 5-JUN-1998 : fixed the timing of /DS for all the I/O cycle types.

4.16 5-JUN-1998 : added wait states for I/O cycles that are requested by the EISA bus while the
state machine is busy (probably with refresh) to the HSTB equations in the STATM pal.

4.17 5-JUN-1998 : fixed the EXRDY equations for the EISADR pal. They were deactivating
EXRDY for all non-memory accesses !

4.18 13-JUL-1998 : fixed the equations for /WBWEB0LWR32, /WBWEB0UPR16,
/WBWEB1LWR32 and /WBWEB1UPR16 in the IOTR pal by substituting
*(/trfbank+/init) for */trfbank and *(/trfbank+/init) for *trfbank. This
required the assignment of a new /INIT input to pin 11 of the IOTR pal, plus a wire from
CLOCK./INIT to IOTR./INIT.

4.19 22-JUL-1998 : included */hidcs in the equations for D[0..11] in the TRIG pal, since
otherwise there is nothing to prevent the SRAM contents from being read when the EISA ID
is being accessed.

4.20 20-AUG-1998 : added outputs /SCLOCKC and /SCLKDLY to the CLKDR pal to form the
SCLOCKIN input latch. This inhibits spurious transitions on the /SCLOCKA and /SCLOCKB
outputs for small period of time after each valid transition, thereby tolerating ringing on the
SCLOCKIN input. It requires a resistor from /SCLOCKC (pin 17 of CLKDR) to /SCLKDLY
(pin 11 of CLKDR) and a capacitor from /SCLKDLY (pin 11 of CLKDR) to GND (pin 10 of
CLKDR).

4.21 21-AUG-1998 : terminated the SC inputs to the VRAMs with 100 ? to GND, since otherwise
substantial ringing occurs on negative transitions, causing extra unwanted clocking.

4.22 13-OCT-1998 : fixed the TRFREQ equation for the STATM pal. It was clearing TRFREQ in
state (sE + sF) of a REFRESH as well as a TRANSFER cycle. This resulted in lost transfer
cycles.

4.23 23-OCT-1998 : qualified the ACC[0..1] equations for the STATM pal with a new
ARBITRATE signal that is itself qualified with a new ARBHOLD signal. ARBITRATE and
ARBHOLD are only activated during the SWITCH state; ARBITRATE is activated for one
cycle then ARBHOLD is activated for the next. The latter gives the state machine a cycle in
which to respond without fear of arbitration changes (prior to this fix the arbitration could
change at the end of the cycle in which the state machine was responding).

4.24 23-OCT-1998 : qualified the ACC[0..1] decoding into cycle types in the STATM pal with a
new CYCLE_END signal that prevents mis-activation of other signals when the state machine
has just re-entered the SWITCH state at the end of a cycle.

Patch List

Page 118 28th October, 1998

4.25 23-OCT-98 : removed the TRFREQ term from the /CS equation in the STATM pal, since
otherwise /CS is deactivated too early by the deactivation of TRFREQ at state sE of the state
machine.

5. Still to be Done

5.1 Tracing and triggering from the timestamp counter still hasn't been successfully tested,
despite many attempts.

5.2 Tracing and triggering from the timestamp counter needs to be tested from an external
source, perhaps a logic tutor generating a pseudo random number.

5.3 A program needs to be written to gener ate a plot of node layouts for MACH210 (and
MACH435/445) pals from the .PLC files. This would greatly simplify the manual placement
that becomes necessary when the pal utilization is greater than, say 80%.

Deep Trace DT200.1

Document History

Document Sources

1. This document uses design information from the archive of Philip O'Carroll's directory from Inma
Kinsella's Macintosh (see Philip O'Carroll 5-NOV-96 in archive VOLUME3), and information in the
file TOLSYS.ZIP in the same archive (VOLUME3), which is duplicated in the PC Archive
VOLUME20.

2. The files DEEPTRA.DOC, DT200E.DOC and PATCHES.DOC appear to have been created by Word6
for Windows.

3. The file IDAPROP reads into Word, but contains what appears to be formatting information.

4. It has not yet been possible to establish what application was used to create the files DT-TRIG and
LAYOUT. There are also versions of these files without a resource fork.

5. The file TOLSYS.ZIP contains the most comprehensive collection of original TraceBoard info.

6. The original design and manufacturing files have not yet been located. The manufacturer, Exacta
Circuits Limited, Selkirk, Scotland, no longer have copies of the manufacturing files.

Revision History

Revision 1 : 6th June, 1998

Revision 2 : 28th October, 1998

