
B1700 Design and Implementation

by Wayne T. Wilner, Ph.D

Burroughs Corporation

Santa Barbara Plant

Goleta, California

May 1972

...ABSTRACT 3
..1. INTRODUCTION 3

...2. DESIGN OBJECTIVE 4
2.1 Design Rationale 4

..3. GENERAL DESIGN 5
..4. HARDWARE REQUIREMENTS 6

4.1 Defined-Field Capability 6
4.2 Generalized Language Interpretation 7
4.3 Advanced Design 8
4.3.1 Virtual Memory 8
4.3.2 Stack Organization 8
4.3.3 Dynamic System Configuration 8
4.3.4 Multiprogramming 8
4.3.5 Multiprocessing 9
4.3.6 Descriptor-organized I/O 9
4.3.7 Soft Interrupts 9
4.3.8 Profile statistics 9

..5. SYSTEM ORGANIZATION 11
...6. EMULATION VEHICLE 11

...7. DEFINED-FIELD DESIGN 12
7.1 ????????? 12
7.2 Bit-oriented Memory 12

..8. SOFT INTERPRETATION 17
8.1 Interpreter-Machine Interface 17
8.1.1 S-machine Switching 17
8.2 Interpreter Management 19
8.3 Ease of Microprogramming 20

..9. VIRTUAL MEMORY 21
9.1 Virtual M-memory 21
9.2 Virtual S-memory 22

...10. STACK ORGANIZATION 22
...11. DYNAMIC SYSTEM CONFIGURATION 23

..12. MULTIPROGRAMMING 23
..13. MULTIPROCESSING 24

...14. DESCRIPTOR-ORGANIZED I/O 24
...15. SYSTEM PERFORMANCE MONITORING 24

15.1 Profile Statistics 24
15.2 “Monitor” Microinstruction 25

...16. EVALUATION 25
16.1 Utilization of Memory 26
16.2 Running Time 27

..17. CONCLUSION 28
...18. ACKNOWLEDGMENT 28

..19. BIBLIOGRAPHY 28
...Ian Joyner’s Notes 29

Wilner – B1700 Design and Implementation May 1972 2

ABSTRACT

Burroughs1 B17002 embodies a unique design tenet: the work done to accommodate defin-
able machine structure from instruction to instruction is less than the work wasted from in-
struction to instruction when one machine structure is used for all applications. In other
words, execution of machine language using procrustean hardware causes more inefficien-
cies than soft interpretation of arbitrary machine language on protean hardware.

The programs on the B1700 are not represented in B1700 machine language but in “S-
language”, that is, some other computer’s machine language or a machine language in-
vented (by Burroughs or by the user) expressly for the program’s application area. Interpre-
tation of S-language is aided by: (a) bit-addressable memory, (b) parallel access of
arbitrarily-sized3 memory fields, (c) equal memory speed on all bit locations and bit string
lengths, (d) clock-by-clock control over the effective width of processor data paths, regis-
ters, and structured logic elements, (e) soft microprograms, (f) English language micropro-
gramming, (g) execution of microcode indifferently from main memory or control memory,
(h) enough control memory to hold four interpreters and no limit on the number of inter-
preters that may be active at any given instant, (i) memory protection, (j) hard and soft inter-
rupts, (k) stack organization, (l) Master Control Program taking full responsibility for effi-
cient system-utilization by means of interpreter multiprogramming and multiprocessing,
user multiprogramming and multiprocessing, virtual control memory of 224 (over 16 mil-
lion) bits, virtual main memory of 244 (over 17 trillion) bits, soft interpretation of I/O com-
mands, and (m) automatic program profile statistics. Programs on the B1700 are independ-
ent of: location, storage organization, I/O organization, processor organization, peripheral
idiosyncrasies, mix4 size, and system configuration (except for unique devices). Priced in
the lowest system range, the B1700 offers time- and money-saving features not found on
systems 100 times more expensive.

The net result of this advanced system design is ease of use, simple programming, lack of
conversion costs, improved utilization of system components, and better price/performance.

Keywords: computer architecture, microprogramming, definable structure, B1700, S-
language, interpretation

1. INTRODUCTION

Procrustes was the ancient Attican malefactor who forced wayfarers to lie on an iron bed.
He either stretched or cut short each person’s legs to fit the bed’s length. Finally, Procrustes
was forced onto his own bed by Theseus.

Today the story is being reenacted. Von Neumann-derived5 machines are automatous
malefactors who force programmers to lie on many procrustean beds. Memory cells and
processor registers are rigid containers which contort data and instructions into unnatural
fields. As we have painfully learned, contemporary representations of numbers introduce
serious difficulties for numerical processing. Manipulation of variable-length information is
excruciating. Another procrustean bed is machine instructions, which provide a small num-
ber of elementary operations, compared to the gamut of algorithmic procedures. Although

Wilner – B1700 Design and Implementation May 1972 3

each set is universal, in that it can compute any function, the scope of applications for which
each is efficient is far smaller than the scope of applications for which each is used. Con-
figuration limits, too, restrict information processing tasks to sizes which are often inade-
quate. Worst of all, even when a program and its data agreeably fit a particular machine,
they are confined to that machine; few, if any, other computers can process them.

In von Neumann’s design for primordial EDVAC1 rigidity of structure was more benefi-
cial than detrimental. It simplified expensive hardware and bought precious speed. Since
then, declining hardware costs and advanced software techniques have shifted the optimum
blend of rigid versus variable structured toward variability. As long ago as 1961, hardware
of Burroughs B50002 implemented limitless main memory using variable length segments.
Operands have proceeded from single words, to bytes,

1. See EDVAC, Burks, Goldstine, and von Neumann.

2. See B5000, Lonergan and King.

to strings of four-bit digits, as on the B3500. The demand for instruction variability has in-
creased as well. The semantics of the growing number of programming languages are not
converging to a small set of primitive operations. Each new language adds to our supply of
fundamental data structures and basic operations.

This shifting milieu has altered the premises from which new system designs are derived.
To increase throughput on an expanding range of applications, general-purpose computers
need to be adaptable more specifically to the tasks they try to perform. For example, if CO-
BOL programs make up the daily workload, one’s computer had better acquire a “Move”
instruction whose function is similar to the semantics of the COBOL verb MOVE. To ac-
commodate future applications, the variability of computer structures must increase, in yet
unknown directions. Such flexibility reminds one of Proteus, the mythological god who
could change his shape to that of any creature.

2. DESIGN OBJECTIVE

Burroughs B1700 is a protean attempt to completely vanquish procrustean structures6, to
give 100% variability, or the appearance of no inherent structure. Without inherent structure,
there are no word sizes or data formats – operands may be any shape or size, without loss of
efficiency; there are no a priori instructions—machine operations may be any function, in
any form, without loss of efficiency; configuration limits, while not totally removable, can
be beyond state-of-the-art extremes; modularity may be increased, to allow miniconfigura-
tions and supercomputers using the same components.

2.1 Design Rationale

The B1700’s premise is that the effort needed to accommodate definability from instruction
to instruction is less than the effort wasted from instruction to instruction when one system
design is used for all applications. With definable structure, information is able to be repre-
sented according to its own inherent structure. Manipulations are able to be defined accord-
ing to algorithms’ own inherent processes. As long as one can define a machine environment

Wilner – B1700 Design and Implementation May 1972 4

which is more efficient for solving one’s problems than a contemporary machine design, one
can attain more throughput per dollar. As we shall see, there are novel machine designs
which are 10 to 50 times more powerful than contemporary designs, and which can be in-
terpreted by the B1700’s variable-image processor using less than 10 to 50 times the effort,
resulting in faster running times, smaller resource demands, and lower computation costs7.

3. GENERAL DESIGN

To accomplish definable structure, one may observe that during the next decade, something
less than infinite variability is required. As long as control information and data are commu-
nicated to machines through programming languages, the variability with which machines
must cope is limited to that which the languages exhibit. Therefore, it is sufficient to antici-
pate a unique machine environment for each programming language. In this context, abso-
lute binary decks, console switches, assembly languages, etc., are included as programming
language forms of communication. Let us call all such languages “S-languages” (“S” for
“system” or also for “safe” or “source” or “specialized” or “simulated”).

Machines which execute S-language directly are called “S-machines”. The B1700’s ob-
jective, consequently, is to emulate existing and future S-machines, whether these are 360’s,
FORTRAN machines, or whatever. Rather than pretend to be good at all applications, the
Bl700 strives only to interpret arbitrary S-language superbly. The burden of performing well
in particular applications is shifted to specific S-machines. Throughput measurements, re-
ported below, show that the tandem system of:

is more efficient than a single system when more than one application area is considered. It
is even more efficient than conventional design for many individual application areas, such
as sorting.

To visualize the architectural advantage of implementing the S-machine concept, imagine
a two-dimensional continuum of machine designs, as in Figures 1 and 2. Designs which are
optimally suited to specific applications are represented by bullets (•) beside the applica-
tion’s name. The goodness-of-fit of a particular machine design, which is represented as a
point (*) in the continuum, to various applications is given by its distance from the optimum
for each application; the shorter the distance, the better the fit and the more efficient the ma-
chine is. Figure 1 dramatizes the disadvantage of using one design for COBOL, FORTRAN,
Emulation, and Operating System applications. Figure 2 pictures the advantage of
Emulating/lnterpreting many S-machines, each designed for a specific application. Note that

Wilner – B1700 Design and Implementation May 1972 5

Emulation inefficiencies must be counted once for each S-machine, since they are all inter-
preted.

Figure 1. Typical machine design positioned by goodness-of-fit to application areas.

Figure 2. Typical B1700 S-machines positioned by goodness-of-fit to application areas.

4. HARDWARE REQUIREMENTS

Varying the processor’s image for each application area implies very specific hardware re-
quirements.

4.1 Defined-Field Capability

All information is represented by fields, which are (recursively) defined to be either bit
strings or strings of fields; i. e., bytes and words do not exist.

(a) All memory is addressable to the bit.

(b) All field lengths are expressible to the bit.

(c) Memory access hardware must fetch and store one or more bits from any
location with equal facility. That is, there must be no penalty and no pre-
mium attached to location or length.

Wilner – B1700 Design and Implementation May 1972 6

(d) All structured logic elements in the processor can be used iteratively and
fractionally under microprogram control, thus effectively concealing their
structure from the user. Iterative use is required for operands which contain
more bits than a functional unit can hold; fractional use is required for
smaller operands.

4.2 Generalized Language Interpretation

(a) The system should be capable of efficient interpretation of a variety of in-
struction formats.

(b) Format of interpreted instructions should not be predetermined or limited.
The structure of the system should not cause any significant difference in
efficiency due to selection of format.

(c) Interpretation should be by soft microprogram.

(d) Microprograms should be changeable, stored and executed in main memory.
Buffering through faster memory should be invisible to the microprogram-
mer.

(e) Hardware must assist with the concurrent execution of many interpreters, to
make switching as rapid as possible.

(f) Microprograms should be reentrant and recursively usable. Microprogram
execution is a critical part of the B1700. Some of the objectives involved in
the design include: fast entry and exit of microprocedures, compactness of
code and economy of storage, and ease of writing and maintaining mi-
crocode.

(g) Microprograms must not be limited in size. Execution of microprogram
should be invisible to the user and not reflect any variation in microprogram
efficiency due to size.

(h) Microfunctions must implement all present and foreseeable higher-level
language functions efficiently but without prejudicing implementation of
languages. Any function included solely for a single language should be in
addition to basic micro functions which could more generally implement
the function.

While the hardware requirements for defined-field design and generalized language interpre-
tation have been stated so as to allow a varying processor image from microinstruction to
microinstruction, they do not preclude taking advantage of a static processor image. For ex-
ample, the number of bits to be read, written, or swapped between processor and memory
can be different in consecutive microinstructions, but if an interpreted S-machine’s memory
accesses are of. uniform length, this length can be factored out of the interpreter, simplifying
its code. In other words, S-memory may be addressed by any convenient scheme; bit ad-
dresses are available, but not obligatory for the S-machine.

With these hardware advances, language-dependent features such as operand length, are
unbound inside the processor and memory buss, except during portions of selected microin-

Wilner – B1700 Design and Implementation May 1972 7

structions. Some of these features have, until now, been bound before manufacture, by ma-
chine designers. Language designers and users have been able to influence their binding
only indirectly, and only on the next system to be built. On the B1700, the delayed binding
of these features, delayed down to the clock pulse level of the machine, gives language de-
signers and users a new degree of flexibility to exploit.

4.3 Advanced Design

On each newly designed system, professional responsibility dictates that previously proven
advances in system organization be incorporated.

4.3.1 Virtual Memory

(a) S-programs should not be limited in size; all address fields should be variable.

(b) S-programs should not reflect the storage organization of the system.

(c) Programmers should be given feedback on the size and make-up of their
working-sets.

4.3.2 Stack Organization

(a) Programs should be recursive and reentrant.

(b) Subprogram entries and exits should be very fast, to encourage decomposition of
programming tasks into small, comprehensible units.

(c) Compilation and execution efficiency should not be dependent on a manufac-
turer’s ability to solve register allocation problems.

4.3.3 Dynamic System Configuration

(a) Code should be independent of system configuration, to allow addition and dele-
tion of processors, memory modules, I/O channels, and peripherals while pro-
grams are running.

(b) The system itself (not the user) should be responsible for full resource utilization;
hence code should not have to change when the system is reconfigured.

4.3.4 Multiprogramming

(a) The system should run as many jobs at once as are necessary, subject to working-
set limits, to keep each resource fully utilized.

(b) Code should be independent of the number of jobs in the mix, to provide equal
efficiency when running alone as when running with 100 others.

(c) Memory must be protected from all invalid references (read or write).

(d) Hard interrupts are needed to manage asynchronous events with minimum over-
head.

Wilner – B1700 Design and Implementation May 1972 8

4.3.5 Multiprocessing

(a) The system should allow extra processors to be added to memory-rich or
peripheral-rich installations, to balance the system to user workloads.

(b) Program state should be maintained outside of processors, to allow execution by
any processor without excessive switching time.

4.3.6 Descriptor-organized I/O

(a) System I/O is itself a unique application, deserving its own S-language and inter-
preter.

(b) The I/O S-language interpreter may be soft microprogram or a separate, wired
processor, incapable of interpreting other S-languages.

(c) With self-describing I/O requests, processor participation in I/O is reduced, im-
proving the system’s ability to keep many peripherals in operation simultane-
ously.

4.3.7 Soft Interrupts

(a) Asynchronous and infrequent events should not require explicit code for their in-
dividual detection.

4.3.8 Profile statistics

(a) Program behavior should be analyzed and reported back to the programmer, or
filed for overall system analysis.

(b) Reports should be in terms of source language.

(c) Reporting which parts consume the most execution time is of primary impor-
tance.

(d) Compilers writers ought to be told how their languages are being used.

(e) By instrumenting soft microprogram interpreters for profile statistics gathering,
overhead can be kept under 1%.

Wilner – B1700 Design and Implementation May 1972 9

Figure 3. B1700 Organization

Available peripherals include - Card Readers: 300-1400 cpm models, 80 col.; 300-1000 cpm
models, 96 col.; Card Punch, 300 cpm, 80 col.; Card Read-Punch-Print-Sort, 1000/1000/
120/100 cpm, 96 col.; Card Record-Read-Punch-Print-Sort, 300/60/60 cpm, 96 col.; Line
Printers 1-900 lpm models, 132 col.; Paper Tape Peripherals; Disk Storage 5ms-40ms mod-
els, Head-per-Track 2200-4400 bpi models, movable arm, cartridge; Magnetic Tape 7/9
Track, NRZI/PE models; Sorter-Reader 600-1625 dpm models; Data Communications
150Hz-48KHz+models; Graphics; Terminal Computers, Teller Machines, etc.

Wilner – B1700 Design and Implementation May 1972 10

5. SYSTEM ORGANIZATION

Extreme modularity improves the B1700’s ability to adapt to an installation’s requirements.
There may be 1-8 processors connected to one another and to 2-256 65,536-bit main mem-
ory modules, interfaced by one or more field isolation units, described later. Each processor
also connects to 1-8 I/O channels or to 1-4 microprogram memory modules. (See Figure 3.)

With only one processor, the port interchange may be eliminated, as in Figure 4.

Figure 4. One of the smallest B1700’s.

Rental of the system in Figure 4 is expected to be under $1500/month.

6. EMULATION VEHICLE

Any computer which can handle the Bl700’s port-to-port message discipline may employ a
B1700 for on-line emulation. (See Figure 5.)

Figure 5. B1700 as an Emulation Vehicle.

Programs and data are sent to the B1700 for execution; I/O requests are sent back to the host
which uses its own peripherals for them. Interpreters are loaded via the B1700’s console
cassette drive. Present interface specifications expect one interpreter to be in M-memory at a
time. Rental of the system in Figure 5 is expected to be under $2200/month.

Wilner – B1700 Design and Implementation May 1972 11

7. DEFINED-FIELD DESIGN

7.1 Bias Facilities

The mechanisms by which the processor and microinstructions automatically handle vari-
able operand lengths and formats have come to be called “bias” facilities. In addition to a
normal complement of registers, functional units, and data paths, each processor has two
registers which bias its operations:

CPL which specifies operand lengths, from one bit up to as many as the proc-
essor can handle, and

CPU which specifies the unit of information, viz., bit, BCD, USASCII byte,
EBCDIC byte, along with some open codes for future use.

Length-dependent operations, such as add and subtract are controlled by CPL, e.g., to de-
termine when carries occur out of the apparently highest bit position. Memory-accessing
microinstructions may choose to access only as many bits as CPL specifies. Format-
dependent operations always reference CPU to bias combinatorial circuits, such as add and
subtract for selecting binary or decimal results. Thus, microprogram sequences which load
CPL and CPU from data descriptors (or even from the computer operator’s keyboard) dur-
ing an instruction interpretation behave correctly whether binary or decimal operands are
supplied and whatever size the operands are. The microprograms are invariant to actual op-
erand details, so the B1700 hardware appears not to have inherent structure.

Iteration over operands which are longer than the processor can handle is accomplished
by two unique microinstructions, Bias and Count F. Operands are normally referenced by a
pair of field definition registers called F and SF. These have 24-bit subregisters, FA and
SFA, for the data’s bit address, 16-bit subregisters, FL and SFL, for the data’s length (bit
strings are thus limited to 65,535 bits), and 4-bit subregisters, FU and SFU, for format in-
formation. The Bias instruction computes the format and number of bits to bring to the
processor for an iteration by setting CPU from FU or SFU and by setting CPL to FL, SFL,
itself, a literal value, or the minimum of any set of these. The Count F micro uses CPL or a
literal value by which to increment and decrement FA and FL; this indexes through an oper-
and by defining contiguous subfields on which the processor may operate. To handle indefi-
nitely long operands, then, one first writes a microprogram which assumes that the proces-
sor registers are indefinitely long. One suffixes the program with a Branch micro to repeat
the code. One prefaces the program with a Count F and Bias pair, the Count F to define
suboperands that are small enough to fit in the physical processor, and the Bias to compute
the suboperand length (so that the operand need not be a multiple of the processor width), to
load the bias registers, to test for completion, and to bypass the program when the long op-
erand is completely processed. Such a microsequence can handle zero-bit to 65,535-bit op-
erands indiscriminately.

7.2 Bit-oriented Memory

To implement bit-oriented memory at low cost, one uses conventional memories and a
memory-requestor interface which is called a field isolation unit, or F.I.U. (see Figure 6).
The FlU’s tasks are to convert bit addresses, field lengths, and field directions (i.e., address

Wilner – B1700 Design and Implementation May 1972 12

refers to most- or least-significant-bit) into conventional addresses, to align requestor bit
strings with actual memory containers, and to mask off nonparticipating bits. During mem-
ory operations, bytes are read out of memory into the Memory Information Register, MIR, a
bit string is extracted or inserted as the inCormaiion passes through the rotator into either
buffer, and then the buffer is gated to its destination.

Wilner – B1700 Design and Implementation May 1972 13

Figure 6. Field Isolation Unit (Memory/Requestor Interface)

Wilner – B1700 Design and Implementation May 1972 14

Any port on the interchange (see Figure 3) may read bit strings from memory. The port must
supply a bit location, a string length (in bits), and a field direction (one bit meaning forward
or reverse) to the FlU, which places the information into its Memory Address Register. Be-
cause fields may be manipulated in either direction, locations actually refer to between-bit
positions, as illustrated in Figure 7. The thirteen bits from location l3 forward are the same
thirteen as accessed from location 26 backward. This simplifies microprogramming by nam-
ing bit strings in a manner similar to the way in which we think about them.

Figure 7. Defined-field addresses labelling between-bit positions.

Given a field location, the FlU calculates which byte in the conventional memory contains
the leading bit. On the B1700, there are four 9-bit memories (one bit of which is used for
parity). Consequently, the low three bits of an address specify a bit position within a word,
the next two bits specify one of the four memories, and the high 19 bits constitute a conven-
tional address. The leading bit is in the word specified by the high 21 address bits. This
word, and the corresponding words in the other memories, are brought to the FIU’s Read
MIR. For example, the accessed words which satisfy a request for the l3-bit field beginning
at location 13, forward, are shaded in Figure 8. The field itself is doubly shaded. From the
low three bits and direction of a request, the FlU. is told how many positions and in what
direction to rotate the received field in order to right-justify it. The request length is used to
create a mask which zeros the unneeded high bits. The isolated field is then sent to the port
interchange, as shown in Figure 9.

Figure 8. Words (shaded cells) delivered to FlU satisfying request for
13 bits beginning with location 13, forward.

Wilner – B1700 Design and Implementation May 1972 15

Figure 9. Read field isolate.

On the B1700, the field is available at a processor’s port 668 nsec after the read request is
initiated, assuming the port interchange and memory are both free. The port and FlU are in-
volved during the last 500 nsec.

To write bit strings into memory, the FlU accepts a request (i.e., location, length, direc-
tion) and performs a read cycle to bring the receiving memory field to the Read MIR and
right-justified through the rotator. It then accepts a bit string from the port interchange
which goes through the Write MIR and is masked into the memory field at the rotator. Then
the rotator returns the information to word-alignment, and passes it through to the write
buffer, where it returns to memory. Write cycles involve ports for 500 nsec and the FlU for
1169 nsec.

Since writes are performed as Read-Modify-Write, the addressed field, as it was before
modification, is available in the read buffer for the requesting port. Thus, fields may be
swapped between memory and a processor by one microinstruction. It is also possible to
force two back-to-back requests, which gives any processor the ability to test and set, and
restore a bit string in one uninterruptable operation. This is vital for administering multi-
processor, multiprogramming environments because it can be used to prevent system dead-
locks.

Because the amount of information which resides with the processor is so large (registers
plus M-memory), one processor uses only 20% of the available S-memory cycles, which
enables one FIU to support several processors. In addition, almost 80% of processor re-
quests are reads.

Of the 41 bits required to specify a memory request, typically 5-10 come from the S-
instruction. The rest come from other S-machine state. They represent the context within
which the S-machine is working. The length field, for example, constantly is 16 when the S-
machine is the IBM 1130. Consequently, little work is needed to maintain such large address
fields.

Wilner – B1700 Design and Implementation May 1972 16

8. SOFT INTERPRETATION

All Burroughs-supplied interpreters rely on the B1700’s Master Control Program (MCP) for
all input/output, virtual S-memory, virtual M-memory, multiprogramming and multiproces-
sing of user programs, multiprogramming and multiprocessing of interpreters, and standard
functions. The MCP is written entirely in a higher-level language (a synergism of features
from COBOL, PL/T, and XPL) :which is interpreted itself. To provide for smooth change of
control, a microprogrammed interpreter interfacing routine, named Gismo, exists in the be-
ginning memory locations. By loading a pointer to another program into a processor register
and clearing the microprogram address register, each interpreter transfers to Gismo. Gismo
uses the program pointer to establish processor context within the new interpreter. Subse-
quent microinstructions are taken from the new interpreter.

8.1 Interpreter-Machine Interface

Given this interpreter interface, simple, hardware-oriented tasks such as interrupt decoding
and priority resolution, M-memory overlay, and I/O transfer, can be included in the interface
routine, simplifying the requirements of an interpreter.

An interpreter has control of a processor until interrupted by another element in thc sys-
tem or by programmatic interrupt. Between each S-instruction interpretation (approximately
every 35 usec.), every interpreter must examine the processor’s interrupt register to detect
the need for change of control. If an interrupt is present, the interpreter calls (instead of
transfers to) Gismo, leaving a constant in a register which directs Gismo to decode the inter-
rupt. For simple functions such as timer interval or I/O transfer, Gismo actually performs
the required actions. For other interrupts, Gismo returns an appropriate description to the
calling interpreter.

If the interpreter can handle the interrupt, it does so and continues with the next S-
instruction if all interrupts are quiet. If it cannot, it moves its S-machine’s state outside of
the processor, loads a constant which means “call MCP”, and transfers to Gismo. Very little
state needs to be saved because no S-instruction is in the middle of interpretation.

Real-time interrupts are distinguished by hardware, but are handled in exactly the same
way. When Gismo is told to “call MCP”, it may select a non-MCP program to process real-
time interrupts (such as a COBOL routine which performs a pocket select for a document-
sorter).

Gismo is also called by the MCP to move interpreter segments into M-memory, by all
programs to initiate I/O, and by the computer operator to perform some start-up or post-
mortem utility functions.

8.1.1 S-machine Switching

Note that change of control is between S-machines, which does not necessarily mean a dif-
ferent interpreter is needed. (When all user programs are written in the MCP’s language,
only one interpreter is active.) Each job is represented in S-memory according to Figure 10.
All but one segment is read-only code. The one is called the “run structure” and consists of:
I/O buffers; data; descriptions of devices and operands; and the run structure nucleus which

Wilner – B1700 Design and Implementation May 1972 17

contains the job’s S-machine state and MCP-needed control information. All segments (ex-
cept the run structure nucleus) move into memory under control of the MCP. The data sec-
tion mayor may not be administered internally by a virtual memory discipline. Note that
code segments never are written out of memory because they never change. The space they
occupy is always available for other uses.

The MCP’s run structure includes an interpreter dictionary, each entry of which describes
an interpreter (either active in S-memory or on disk).

Figure 10. Program components.

To reinstate a user’s interpreter, the MCP extracts from the user’s S-machine state the name
of the interpreter being used. The interpreter name is looked up in the interpreter dictionary
to yield a pointer to the interpreter code in S-memory. The MCP’s interpreter then saves its
S-machine state, loads the pointer into a hard register, and resets the Microprogram Base
Register and Microprogram Address Register (to leave the MCP’s interpreter’s code space).
The next micro is brought from Gismo, which uses the hard register to load the Micropro-
gram Base Register, transferring microinstruction fetches to the new interpreter’s code
space. Associating S-machines and interpreters symbolically allows such things as several
COBOL interpreters active in one mix—one designed for speed, another for code compac-
tion, etc.,—all employing the same S-language expressly designed for COBOL (that is, a
COBOL-machine definition).

To switch back to the MCP interpreter, a user interpreter obtains a pointer to the MCP’s
run structure from the user program’s run structure and performs the identical procedure.

Interpreter switching is independent of any execution considerations. It may be per-
formed between any two S-instructions, even without switching S-instruction streams. That
is, an S-program may direct its interpreter to summon another interpreter for itself. This fa-
cility is useful for changing between tracing and non-tracing interpreters during debugging.

Interpreter switching is also independent of M-memory. The Microprogram Address Reg-
ister always actually addresses S-memory. In case M is present, special hardware diverts
fetches to it, whenever the Microprogram Limit Register indicates that M’s contents mirror
the portion of S-memory being addressed. Without M, no fetches are diverted, and Gismo
sits in low S-memory.

Wilner – B1700 Design and Implementation May 1972 18

8.2 Interpreter Management

Entries in the interpreter dictionary are added whenever a job is initiated which requests a
new interpreter. Interpreters usually reside on disk, but may be read in from tape, cards, cas-
settes, data comm, or other media. They have the same status in the system that object code
files, source language files, data files, compiler files, and MCP files all share: symbolically-
named, media-independent bit strings. While active, a copy is brought from disk, to be
available in main memory for direct execution. The location may change during interpreta-
tion due to virtual S-memory management, so microinstructions are location-independent.

At each job initiation and termination, the MCP rearranges M-memory for the processor
being readied according to five strategies:

(a) Abundant M

 Condition: All active interpreters can fit in M. Place all interpreters into M.

 Action: Place all interpreters into M.

(b) Ample M

 Condition: All active interpreters can be granted at least their minimum M
request (usually 1000 words = 1000 l6-bit micros).

 Action: Divide M evenly and place part of each interpreter in M.

(c) Adequate M

 Condition: Several interpreters can be given their minimums, but not all.

 Action: Give the MCP’s interpreter about 1000 words; divide the rest
into 1000-word blocks and swap all user interpreters in and out
during reinstate operations.

(d) Precious M

 Condition: Only two interpreters can be given their minimums.

 Action: Give the MCP its minimum; swap all users in and out of the rest.

(e) Bare M

 Condition: Only one interpreter can be given a minimum demand.

 Action: At each interpreter switch, place one interpreter into all of M.

Interpreter profile statistics show that 1000 micros (1000 words) account for over 99% of all
instructions executed, even though most interpreters are 2000 words long. If a micropro-
grammer is prudent enough to rearrange his code according to usage, then an interpreter re-
questing 1000 words of M as a minimum may be as efficient as one requesting 2000 words.

Wilner – B1700 Design and Implementation May 1972 19

8.3 Ease of Microprogramming

Writing microprograms for the B1700 is as simple, and in some ways simpler, than writing
FORTRAN subroutines:

(a) Microprograms consist of short, imperative English sentences and narrative
comments. For example, one subroutine in the FORTRAN interpreter reads as
follows8:

* Decimal to binary conversion
* Source: addressed by F; 1-13 digits
* Destination: L Y, initially zero

Decimal-to-binary
Read 8 bits to T counting FA up obtain char and address the

and FL down next one
Move T to X strip off zone bits
Call Add-X-to-LY LY ← LY + X add to partial sum
If FL=0 then exit quit after last char
Move L to X allow another digit:
Call Multiply-XY-by-10 TL ← 10 x XY
Move L to Y LY ←
Move T to L LT ←
Go to Decimal-to-binary repeat

(b) Knowledge of microinstruction forms is not beneficial. Although micropro-
grammers on other machines need to know which bits do what, on the B1700,
there is no way to use that information. Once the function is given in English,
its representation is immaterial. The Bl700 microprogrammer has only one set
of formats to worry about: those belonging to the S-language which he is in-
terpreting.

(c) Multiprogramming of microprograms is purely an MCP function, carried out
without the microprogrammer’s knowledge or assistance. Actually, there is
nothing one would do differently, depending on whether or not other interpret-
ers are running simultaneously.

(d) Use of M-memory is purely an MCP function; the resident interpreter interface
alone can move information in and out of M. Other than rearranging one’s in-
terpreter according to usage, there is nothing one should microprogram differ-
ently depending on whether microinstructions are executing out of M-memory
or S-memory. Maximizing use of system resources is beyond the scope of any
individual program; responsibility lies solely with the MCP and the machine
designers.

(e) Since all references are made symbolically, protection is easy to assure. Mi-
croprograms can reference only what they can name, and they can only name
quantities belonging to themselves and their S-machines. Moreover, names
cannot be artificially generated, as they can in FORTRAN (e.g., by negative

Wilner – B1700 Design and Implementation May 1972 20

subscripts, or by call-by-value parameters used in call-by-reference con-
structs).

(f) Calling out interpreters is simplified by the continuation of Burroughs’ “one-
card-of-free-form-English” philosophy of job control language. Figure 11
shows the control information which creates a new interpreter (1) from cards,
and (2) from a disk file named XCOBOL/SOURCE.

(1) ? COMPILE XCOBOL/INTERP WITH MIL; DATA CARD

(2) ? COMPILE XCOBOL/INTERP WITH MlL; MIL FILE CARD =
XCOBOL/SOURCE

Figure 11. Typical MCP control information for creating interpreters.

(g) Association of interpreters and S-language files occurs at run-time. Figure 12
shows the control information which executes a COBOL program named
FILE/UPDATE with (1) the usual COBOL interpreter, and (2) another inter-
preter named XCOBOL/INTERPRETER.

(1) ? EXECUTE FILE/UPDATE

(2) ? EXECUTE FILE/UPDATE; INTERP = XCOBOL/INTERPRETER

Figure 12. Typical MCP control information for executing programs.

(h) There is no limit to the number of interpreters that may be in the system (ex-
cept that no more than 244 bits are capable of being managed by the B1700’s
present virtual memory property, so a 28,000-bit average interpreter length
means there is a practical limit of 628,292,362 interpreters… many more than
the number of S-languages in the world).

9. VIRTUAL MEMORY

On the Bl700, S-language addresses may be 44 bits long (disregarding the possibility of us-
ing magnetic tape as a backup for main memory), even though each system will have 16
million bits of S-memory or less. M-addresses are 24 bits long, even though each system
will have 65,536 bits of M-memory or less. Virtual memory9 is the mechanism by which the
B1700 accommodates memory references to more bits than are physically attachable.

9.1 Virtual M-memory

As control is switched to an interpreter, two registers are set by the M-memory manager: the
Microprogram Base Register, which contains the memory address of the first interpreter mi-
croinstruction, and the Microprogram Limit Register, which contains the relative position of
the highest micro in M-memory. Micros are always addressed relative to the start of the in-
terpreter. When a reference is made which exceeds the limit register, the relative address is
added to the base register and a main memory fetch is initiated.

This is not a true virtual memory scheme since early interpreter locations are always in
M-memory, and later locations never are. It does have the necessary property, however, that

Wilner – B1700 Design and Implementation May 1972 21

the actual amount of M-memory never impacts the program. Interpreters execute identical
sequences of instructions for a given task as the amount of M-memory varies. The micro-
programmer never takes cognizance of the actual amount of M-memory that is present. (He
should, of course, arrange his interpreter with the most often used parts first.)

9.2 Virtual S-memory

The Bl700 MCP maintains a large disk area for program pieces that are not in use and can
be kept outside of main memory. These pieces may be any number of bits long (up to 224).
Whether they are segments, pages, arrays, or otherwise, depends on the S-machine from
whose environment they came.

All Burroughs S-machines designed for specific programming languages (e.g., COBOL,
FORTRAN, RPG, BASIC, ALGOL) make references through descriptors, or interpretable
pointers. These descriptors define areas within an S-machine’s data or code space; refer-
ences are relative to the start of the described area. The descriptions themselves are relative
to the start of the S-machine’s space, or to an MCP back-up area. When a reference selects
an area which is not in memory, the MCP initiates a disk request and temporarily runs an-
other job. When the absent area is brought in, its descriptor is changed to indicate the new
location. The reference is retried when the job is selected again.

S-machines are free to manage their own data and code spaces, with and without the
MCP’s assistance.

Within an S-machine, only its own data and code spaces are accessible. Each machine
environment is represented as if it began in location zero and extended throughout all mem-
ory, possibly up to 244 (over 17 trillion) bits worth. The B1700 monitors all references to
main memory to verify that they lie between locations contained in the hardware’s Base and
Limit registers which are set by the MCP during reinstating. Illegal references cause a hard
interrupt which transfers control from a user interpreter back to the MCP’s interpreter, pre-
venting meddling in other S-machine’s areas.

10. STACK ORGANIZATION

Each B1700 processor has a hardware stack of 32 24-bit cells. This machinery is intended
solely for microprogram recursion during the interpretation of a single S-instruction. Present
interpreter switching assumes that no information remains pushed into the stack.

Other hardware makes S-machine stacks easy to implement. The ability to read and write
in both directions in S-memory, and to count field definition registers’ subfields up and
down independently give microprograms read-and-pop and write-and-push operations
which can be carried out by one microinstruction.

Wilner – B1700 Design and Implementation May 1972 22

11. DYNAMIC SYSTEM CONFIGURATION

Since no information (other than a few MCP tables) contains absolute memory locations,
the presence or absence of particular memory modules is irrelevant. Should one fail, it may
be taken off-line and repaired without disturbing the rest of the system. Conversely, when
memory modules are added to the system, the B1700’s location-independent segments can
be placed in them as soon as they are brought on-line. No code in the MCP nor in any user
program need ever be revised due to memory reconfiguration.

Likewise, the identity of any processor, I/O channel, or peripheral is not represented in
any user program or MCP routine. When particular devices are needed, their identity is
looked up using a symbolic reference each time a device is accessed. Consequently, devices
may leave the system without inhibiting any program from running (unless the MCP is. not
able to create a pseudodevice to hold the I/O requests until the real device is available
again). Further, devices may enter the system and be fully utilized without changing any
user or MCP code.

12. MULTIPROGRAMMING

A misunderstood concept,multiprogramming refers to the interlaced processing of inde-
pendent programs using as much of an entire system’s resources as are required. It is usually
confused with partitioning, which is the interlaced execution of independent programs using
part of a system’s resources. Under multiprogramming, two three-tape sorts which use 24K
of core can be run together on a three-tape, 24K system (the MCP must utilize three pseudo-
tapes); a partitioned system needs six tapes of 48K or both.

A simple way to implement multiprogramming is to represent each program in main
memory exclusively; that is, no state information or temporary results are kept in a proces-
sor…everything is available in memory. On the B1700, this is true of each S-machine. To
interlace processing of each program, imagine directing the processor to execute exactly one
instruction from each program, in round-robin fashion. Since everything necessary for any
instruction’s execution is represented in memory, no difficulties are. encountered in passing
from one program to the next. Such an approach, however, denies the efficiencies which can
be obtained by successive instruction executions in one processor. The Bl700 takes an in-
termediate approach which is made feasible by its descriptor organized virtual memory
scheme. Each program is executed until it requires MCP assistance, either for I/O or virtual
memory management, or until an interrupt occurs. When a program can go no further by
itself, its state is recorded in memory and another task is taken up. It is a happy discovery
that such breakpoints occur often enough to keep the MCP attentive to the needs of many
jobs. This scheme is further refined by allowing programs to become dormant, which per-
mits their state information to be taken out of main memory. Subsequent I/O operations on
which dormant programs may be waiting carry some form of identification which ties them
to the dormant program, and causes program state information to be brought back.

Wilner – B1700 Design and Implementation May 1972 23

13. MULTIPROCESSING

Multiprocessing is the concurrent execution of more than one processor on independent
programs. The processor-independent program state, which is used to keep multiprogram-
ming simple, automatically allows any program to be resumed by any processor, as long as
each processor can address all of memory, communicate with the entire I/O system, and has
access to the interpreter named in the program’s run structure (see Figure 10). All of these
conditions are always true of B1700 processors.

14. DESCRIPTOR-ORGANIZED I/O

Because I/O processing is often not directly dependent on subsequent program steps, greater
throughput can be achieved by overlapping I/O processing with other processor activity. So,
to reduce B1700 processor involvement with I/O, requests take the form of descriptors (in-
terpretable programs) whose effect, when interpreted, is the I/O function. To activate a re-
quest, a processor sends a port-to-port message across the port interchange. The message
locates an I/O descriptor in main memory which an I/O processor will interpret. Non-I/O
processors are thus relieved of the intricacies of device and channel communication.

On one-processor B1700 systems, the only I/O descriptors which are fabricated are self-
evident to the device controls themselves. Each contains a literal device name and an op-
code for the device, as well as the. addresses to be used for information transfer in and out
of memory. On multi-processor B1700 systems, the opportunity to create arbitrary descrip-
tors is present, enabling file-oriented activities, such as record accessing, searching, and
sorting, to be carried out in the I/O realm. In addition, new device disciplines can be ac-
commodated by new microcode for the I/O processors.

15. SYSTEM PERFORMANCE MONITORING

15.1 Profile Statistics

Whereas hardware receives extensive and penetrating scrutiny while it is being designed,
software is normally constructed with only the programmer’s intuitions about its efficiency
to guide its design. The performance measurement technique of profile statistics, the asso-
ciation of code usage with a program’s source language, has been reported to help improve a
program’s running tine by a factor of two to ten. (See Darden and Heller, or Knuth [Pro-
file]). To help B1700 users obtain the greatest throughput per dollar, each Burroughs inter-
preter can gather profile statistics about a program which it is interpreting and present them
at the end of a run.

At compile time, a user may indicate which portions of his program are to receive more
or less scrutiny. These indications define a set of program segments whose usage is to be re-
corded by means of an inserted S-language monitoring command.

The compiled program consists of: the code segments expanded with monitors (by less
than 1%), textual information which will be used to describe the participating program seg-

Wilner – B1700 Design and Implementation May 1972 24

ments in terms of source language, and an array of cells for the frequency counts. Interpre-
tation of the monitors appears to extend execution times by less than 0.5%. After execution,
the weighted frequency counts show which program segments account for most of the run-
ning time. Reprogramming these critical segments for efficiency will reduce running times
the most.

Microprogramming can easily allow dynamic measurements of other properties as well,
with similarly small overhead.

15.2 “Monitor” Microinstruction

One microinstruction, Monitor, simply presents a user-specified bit pattern at designated
pins in the processor backplane and frontplane. This allows unique software “events” to be
identified by external hardware, which greatly simplifies the task of knowing what the sys-
tem is doing.

Each higher-level language has been extended to include a construct which generates a
Monitor S-instruction for each interpreter to carry into an identical microinstruction. Event
flagging is thus available to all programmers.

16. EVALUATION

The B1700’s ability to provide profile statistics at negligible cost voids all known system
performance measures. Consider benchmarks, which measure more system parameters than
any other technique.

Any benchmark program which runs on the B1700 develops not only an observed run-
ning time, but also an indication of how to reduce that time (often by more than 50%).
What, then, is the true performance on the system? Not the observed time, because ineffi-
ciencies are pin-pointed. Half the time?

Not until the benchmark has been changed. The point of benchmarks is to have a stan-
dard reference which allows the customer to characterize his work and obtain a cost/
performance measure. What customer would be satisfied with an inefficient characteriza-
tion? If the Bl700 can show that a program is not using the system well, what good is it as a
benchmark? If we change the program to remove the inefficiencies, it is no longer standard.
This is a pernicious dilemma.

Even the simplest measure, add time, still published as if it hasn’t been a misleading and
unreliable indicator for the past 15 years, is void. What is the relative performance of two
machines, one of which can do an almost infinite variety of additions and the other of which
can do only one or two? The B1700 can add two 0-24 bit binary or decimal numbers in 187
nsec; how fast must a 16-bit binary machine be in order to have an equivalent add time?

Assuming reasonable benchmark figures are obtainable, they would say . nothing about
the intrinsic value of a machine which can execute another machine’s operators, for both
existing and imaginary computers; which can interpret any current and presently conceiv-
able programming language; which can always accept one more job into the mix; which can

Wilner – B1700 Design and Implementation May 1972 25

add on one more peripheral and one more memory module, to grow with the user; which
can interpret one more application-tailored S-machine; which can tell a programmer where
his program is least efficient; which can continue operation in spite of failures in processing,
memory, and I/O modules. These characteristics of the B1700, shared by few other machi-
nes—no machine shares them all—save time and money, but are not yet part of any per-
formance measurement.

Despite the nullification of measures with which we are familiar and the gargantuan chal-
lenge of measuring the B1700’s advancements of the state-of-the-art, there are, nevertheless,
some quantifiable signs that the system gives more performance than comparably-priced
and higher-priced equipment.

16.1 Utilization of Memory

Defined-field design’s major benefit is that information can be represented in natural con-
tainers and formats. Applied to language interpretation, defined-field architecture allows S-
language definitions which are more efficient in terms of memory utilization than machine
architectures which have word- or byte-oriented architecture. For example, short addresses
may be encoded in short fields, and long addresses in long fields (assuming the interpreter
for the language is programmed to decode the different sizes). Alternatively, address field
size may be a runtime parameter determined during compilation. That is, programs with
fewer than 256 variables may be encoded into an S-language that uses eight-bit data address
fields. Even the fastest microcode that can be written to interpret address fields is able to use
a dynamic variable to determine the size of the field to be interpreted.

Just how efficient this makes S-languages is difficult to say because no standard exists.
What criterion will tell us how well a given computer represents programs? What “stan-
dard” size does any particular program have? We would like a measure that takes a pro-
gram’s semantics into account, not just a statistical measure such as entropy.

If we simply ask how much memory is devoted to representing the object code for a set
of programs, we find the following statistics:

Language Aggregate Aggregate Other % Improved B1700
of Sample Size on B1700 Size on Other System Utilization

FORTRAN 280KB 560KB System/360 50%
FORTRAN 280KB 450KB B3500 40%
COBOL 450KB 1200KB B3500 60%
COBOL 450KB 1490KB System/360 70%
RPGII 150KB 310KB System/3 50%

In short, the B1700 appears to require less than half the memory needed by byte-oriented
systems to represent programs. Comparisons with word-oriented systems are even more fa-
vorable.

As to memory utilization, the advantage of the B1700 is even more apparent. Consider
two systems with 32KB (bytes) of main memory, one a System/3, the other a B1700. Sup-
pose a 4KB RPG II program is running on each. If we ask how much main memory is in
use, we find:

Wilner – B1700 Design and Implementation May 1972 26

System Bytes in Use % Comment

System/3 32K 100 28K is idle without multiprogramming
 and virtual memory.

B1700 1K 3 Assumes 500B run structure and 500B
 of program and data segments.

In other words, the utilization at any given moment may be 30 times better on the B1700
than on the System/3. At least, with all program segments in core, it is seven times better
(4.5KB vs. 32KB). Even if we assume that the RPC interpreter is in main memory and is
not shared by other RPC jobs in the mix, the comparison varies from 6:1 to 4:1, 5KB to
8KB (vs. 32KB), 84% to 75%. better utilization. As more and more RPG jobs become ac-
tive in the mix, the effect of the interpreter diminishes, but then comparison becomes mean-
ingless, because other low-cost systems cannot handle so large a mix. (Note that these fig-
ures change when a different main memory size is considered, so the comparison is more an
illustration of the advantage of the Bl700’s variable-length segments and virtual memory
than of its memory utilization.)

16.2 Running Time

Although program running time is said to involve less annual cost at installations than the
unquantifiable parameter which we may call “ease of use”, let us mention some: current ob-
servations. When the Bl700 interprets an RPG II program, the average S-instruction time is
about 35 microseconds, compared to System/3’s 6 microsecond average instruction time.
On a processor-limited application (specifically, calculating prime numbers), the identical
RPG program runs in 25 seconds on a Bl700 and 208 seconds on a System/3 model 10.
Both systems had enough main memory to contain the complete program; only the memory
and processor were used.

The particular configurations leased for $3500 (B1700) vs. $2000 (System/3). In terms of
cost, the B1700 run consumed $0.30 while the System/3 run took $1.60. In terms of instruc-
tion executions, the Bl700 was 50 times faster. That is, each individual interpreted RPG in-
struction, on the average, contributed as much to the final solution as 50 System/3 machine
instructions. When one considers that RPG is the only programming language on the
System/3, it is incredible that System/3 seems so poorly equipped to run RPG programs. It
is even more incredible because the Bl700 really has no S-language expressly for RPG; it
uses the COBOL S-language instead. The likelihood of an S-machine more than 50 times
more efficient than System/3 is almost certain. This seems to support the Bl700 philosophy,
that interpretation of S-machines for each application is more efficient than using a general-
purpose architecture.

Using another set of benchmark programs (for banking applications), and another Bl700
which leases for $2000, throughput comparisons are again astounding. On the one hand, we
are comparing a defined-field, soft-interpreting, soft-I/O-processing machine using pre-
release compilers, interpreters, and MCP routines, under multiprogramming, multiproces-
sing, virtual memory systems design, against, on the other hand, a byte-oriented, hard-wired
system with two years’ field testing, five software releases, batch-processing, one cpu, and

Wilner – B1700 Design and Implementation May 1972 27

32K maximum main memory. Despite all of the B1700 features, which supposedly trade
speed for flexibility, the B1700 executes RPG programs in 50% to 75% of the System/3
time, and compiles them in 110% of the System/3 time, for the same monthly rental. In ap-
plications of this type, compilation is expected annually (monthly at worst) while execution
is expected daily. (Systems used for this comparison included a multi-function card unit to
read, print, and punch 96-column cards, a 132-position 300 lpm printer, a dual spindle 4400
bpi disk cartridge drive, and operator keyboard. The System/3 could read cards at 500 cpm,
while the B1700 could read at 300 cpm.)

17. CONCLUSION

Microprogramming, firmware, user-defined operators, and special-purpose minicomputers
are being touted as effective ways to increase throughput on specific applications while de-
creasing hardware costs. Standard system modules may be tailored to an installation’s
needs. Effective as these approaches are, they are all held back by procrustean machine ar-
chitecture. Burroughs B1700 appears to eliminate inherent structure by its defined-field and
soft interpretation implementation. Both are advancements of the state-of-the-art. Now one
machine can execute every machine language well, eliminating nearly all conversion costs.
One machine can interpret every programming language well, reducing problem-solving
time and expense. The B1700 does not waste time or memory overcoming its own physical
characteristics; it works directly on the problems. Furthermore, these innovations are avail-
able in low-cost systems that yield better price/performance ratios than conventional ma-
chinery.

18. ACKNOWLEDGMENT

Many of the design objectives were first articulated by R. S. Barton10 [BARTON]. The
author wishes to thank Brian Randell, R. R. Johnson, Rod Bunker, Dean Earnest, and Har-
vey Bingham for their conscientious criticism of various drafts of this article.

19. BIBLIOGRAPHY

BARTON Barton, R. S., “Ideas for Computer Systems Organization: A Personal Sur-
vey”, Software Engineering, vol. 1, Academic Press, New York, 1970, pp.
7-16.

B5000 Lonergan, W., and King, P., “Design of the B5000 System”, Datamation,
vol. 7, #5, (May 1961), pp. 28-32.

EDVAC Burks, A. W., Goldstine, H. H., and von Neumann, J., llpreliminary Discus-
sion of the Logical Design of an Electronic Computing Instrument”, in
Taub, A. H. (ed.), Collected Works of John von.Neumann, vol. 5, The
Macmillan Co., New York, 1963, p. 34-79.

Wilner – B1700 Design and Implementation May 1972 28

Also in Bell, C. G., and Newell, A., Computer Structures: Readings and
Examples, McGraw-Hill Book Co., 1971, pp. 92-119.

PROFILE Darden, S. C., and Heller, S. B., “Streamline Your Software Development”,
Computer Decisions, vol. 2, #10 (October 1970), pp. 29-33.

Knuth, D. E., “An Empirical Study of FORTRAN Programs”, Soft-
ware—Practice and Experience; vol. l, #2 (April 1971) , pp. 105-134.

Ian Joyner’s Notes

Wilner – B1700 Design and Implementation May 1972 29

1 In 1986, Burroughs bought out Sperry to become Unisys. Burroughs was started by William Seward (W.S)
Burroughs in the 1880s as the American Arithmometer Company. After his death the company was renamed
Burroughs in his honour. The Beat Generation author W.S. Burroughs is his grandson, but Edgar Rice Bur-
roughs of Tarzan fame is no relation (as far as I know).

2 The B1700 was the first of the B1000 line of computers. The last was the B1965 in the mid 1980s. Bur-
roughs was to concentrate on the B5000 line of computers, which became an extended range which covered
everything from small to large systems. The B5000 line is now the Unisys Clearpath MCP range. Had Bur-
roughs sales department been more effective, or perhaps IBM’s anti-competitive, anti-trust activities less ef-
fective, perhaps the B1000 interesting an innovative line of computers might still survive today.

3 Some parts of the scanned copy I have have been crossed out. These sections have been restored as
faithhfully as possible.

4 On Burroughs machines, mix refers to the total set of processes running on the machine. These are identi-
fied and controlled by mix numbers like PIDs in Unix.

5 Most machines in 2007 are still Von Neumann machines. A modern example of the B1000 virtual machine
style is the Java JVM. The Java interpreter runs on top of a machine that may already be emulated, for ex-
ample the Intel chips have a microcode level that emulates the x86 instruction set. On the B1700, though
these interpreters ran on the bare microprocessor, making for great efficiency.

6 The B1700 was a counterexample to RISC machines as championed by Hennessy and Patterson in their
book “Computer Architecture”. Hennessy and Patterson have a point in that compilers can generate the raw
processor’s microcode directly, but you end up with large programs with small instructions, which must be
fetched from main memory, potentially filling up a cache before being executed on the processor. With a
higher-level machine, programs are smaller and not nearly so many instructions must be fetched. Processor
architectures whether RISC or CISC have benefitted from caches and instruction pipelines, which actually
work better on more predictable instruction sequences of high-level architectures and it is not clear that RISC
has shown a clear lead in processor performance. Niklaus Wirth designed the Lilith architecture for Oberon
and suggested this was a RISC machine as in “Regular” Instruction Set Computer.

7 One criticism of the B1000 approach is that, like the Java JVM, programs running under an interpreter were
effectively sand-boxed from other processes in the system, thus making IPC difficult. To achieve any IPC, the
MCP had to be invoked to pass messages, reducing efficiency. Contrast this with the B5000 approach (at
least in the B5000’s successors), where programmers could design suites of cooperating tasks, which could
very efficiently communicate through system libraries, which manage shared resources, without context
switching.

Wilner – B1700 Design and Implementation May 1972 30

8 This excerpt is actual microcode written in B1700 MIL (Microcode Implementation Language). While it looks
like a high-level language, it most certainly is not – a high-level language statement would compile to many
machine instructions, but each line in MIL resulted in exactly one machine instruction. Programming in MIL
was fraught with dangers, any mistake could trash the entire system, but its intention was only to implement
other virtual machines as interpreters, with real user programmers running at that level. As with modern emu-
lated machines, process and memory protection would be provided at that level. A MIL compiler probably
didn’t even ship with end customer machines. MIL is more like an machine assembly language, where each
line represents a single machine instruction. However, even though MIL is considerably more low-level than
an assembly language, it is also considerably less cryptic!

9 Burroughs had the first commercial implementation of virtual memory in the B5000 in 1964. Even though
the B1700 was almost a decade later, this was still novel. Furthermore, while other systems were rather
primitive requiring an administrator to partition memory, Burroughs virtual memory systems did not require
this. If extra peripherals were required on other systems, the administrator would have to set up the tables
and do a sysgen (compile the OS), however, Burroughs systems required no such sysgens – an engineer
would come an connect extra peripherals, restart the machine and the MCP would automatically detect new
devices. Later this would become known as plug-and-play, not requiring an engineer or a restart. This works
well on Apple’s OS X, but for Microsoft systems is still a hit-and-miss affair, being dubbed by many as “play-
and-pray”.

10 Bob Barton was the principle architect of the innovative and still existing B5000 architecture, a tagged
memory stack architecture. He built object-oriented principles into architecture and was influential on Alan
Kay, who was a student of his at Utah University. For a fascinating account of the design of the B5000, see
Richard Waychoff’s “Design of the B5000 and People Who Were There”.

