
AccessionIndex: TCD-SCSS-T.20121208.016
Accession Date: 8-Dec-2012
Accession By: Prof.J.G.Byrne
Object name: HP9100A Programmable Calculator
Vintage: c.1968
Synopsis: HP's first calculator. S/N: 816-02612.

Description:
The HP9100A was Hewlett Packard's first calculator, an electronic programmable
reverse Polish scientific calculator, a famous product. It was the intellectual and
philosophical precursor to the equally famous HP35, their first handheld calculator.

The prototype, a floating-point algebraic calculator called the Green Machine, was
begun privately c.1964 by Tom Osbourne, based on algorithmic state machine
concepts from his PhD. Once working, he prepared patent documents and then
conducted demonstrations over the next year to many companies (including HP)
without eliciting interest until HP was prompted by an ex-colleague, and took on both
the project and Osbourne. See his recollections in this catalog’s related folder. The
Green Machine and its design documentation are now in the Smithsonian Institute.

Within HP this design was combined with work on a fixed-point design by the
mathematician Malcolm McMillan, and evolved to a microprogrammed reverse-
Polish machine with a 3-level stack, that used a high-density inductive printed-circuit
ROM for algorithms, core memory for storage, a CRT display and a magnetic card
reader and writer. It did not use any integrated circuits (which were not sufficiently
low-power then), instead using a form of dynamic logic that Osbourne called "power
gating" to reduce logic complexity and considerably reduce power consumption (to
70W max), and it was notably robust, a feature of HP products of that time.

The architecture could perform several operations in parallel and included multi-way
branching. It had three stack levels, X, Y and Z, all visible on the display. The result
of two operand functions was stored in Y. There were 16 storage registers in core
memory, and their contents survived power cycling. Memory was shared between
programs and data (each register could hold 14 program steps), allowing self-
modifying code. The reader/writer could store 196 program steps on each of two
tracks on cards somewhat smaller than credit cards.

The keys were in four groups: scientific functions, stack and memory functions, digits
and basic math, and programming functions. There was a thumb wheel for selecting
the number of digits displayed after the decimal point, and switches for degrees or
radians, fixed or floating point, on/off and program/run. It performed many scientific
calculator functions like loge, log10, antilog, square-root, trigonometrics, hyperbolics,
their inverses, coordinate conversions, etc, see the brochure in this catalog’s related
folder. Internally numbers had 12 digits, but users were presented with a 10-digit
mantissa and 2-digit exponent, with a floating point range of 10-98 to 10+99.

Although these machines are often called RPN (along with the HP9810 which also
employs the three-register, result-to-Y system), there is no automatic stack lift/drop,
and they don't behave as any other RPN system, and their behaviour doesn't match
modern mathematical definitions of RPN.

The HP9100A should not to be confused with the HP9100B, which had more storage
registers, more program steps, and subroutines.

Mechanically, the HP9100A top cover hinges at the rear. The power supply and CRT
display are mounted on the underside of the top cover. The base unit contains the
logic, with a large motherboard (board 6) that is mostly a matrix of diodes, which
form AND and OR logic gates (which do not need power) for things like the
incrementing and decrementing. Underneath are the 512 x 64-bit program ROM
boards 11-14. There are seven plug-in boards, listed from left to right in the table
below: one small one at each side (9 & 8), two larger boards (1 & 2) at the left and
three larger boards (3, 4 and 5) in the middle (all boards numbered as per HP9100B
schematics; the HP9100A may be different in this regard, but it is unlikely).

Board No. Function
9 Microcode branch logic and error flip-flop
1 Control logic and control ROM
2 20 J-K flip-flops
3 2208-bit Core memory
4 Core memory sense and inhibit circuits
5 20 J-K flip-flops
8 Program ROM instruction decoder

Table 1: HP9100A plugin boards

Board 9 is the microcode branch logic and error flip-flop. Board 1 contains the control
logic (CPU clock and control ROM), which clocks at 1.21 MHz (825 nS cycle).
Boards 2 and 5 each contain 20 J-K flip-flops. Board 8 is the 64-bit program ROM
instruction decoder. Board 3 is the 2208-bit core memory board (in the HP9100B this
was increased to 3840-bits).

Board 4 is the core memory sense and inhibit circuits, essentially the 'data' interface to
the core memory plane, the address drivers being on board 3 with the core plane. This
is another difference between the HP9100A and HP9100B. In the HP9100B, board 3
has address drivers only, while board 4 contains the core memory unit and the sense
and inhibit circuits. Also, in the HP9100B the address drivers are matched to the core
memory plane, so boards 3 & 4 are joined together by double-width handles and the
boards are swapped as a set.

There are actually two ROMs in a HP9100A. One is a ‘core-on-a-rope’ (also called
‘woven-wire’ or ‘braided-wire’) control ROM on the control logic PCB (board 1).
This is essentially storage for the low-level microcode instruction expansion, see
further below. It was a non-traditional form of read-only core memory. It consisted of
29 ferrite cores, with a sense wire through each of the 29 cores, and 64 drive wires
through some cores (representing a logic one) and around the outside of other cores
(representing a logic zero). A current pulse in the drive wire inductively generated all
29 bits of the expanded microcode instruction simultaneously.

The other is the program ROM, which is a 14-layer (some say 16-layer) PCB in the
middle of the bottom of the machine. It has 256 x 64 bits in a HP9100A (512 x 64 bits
in a HP9100B), and works by inductive coupling between PCB tracks. The track

linewidth and separation are both only 0.010”, five times smaller than usual at that
time. This program ROM is 64-bits wide, but that does not make it a 64 bit machine.

The HP9100A architecture is not conventional, and rarely fully explained. HP state
that it had a very-long-instruction-word (VLIW) architecture, with highly nested
VLIW programming, but this is very debateable. There was no general-purpose
arithmetic/logic unit (ALU) which can operate on various registers. Osbourne states
that its arithmetic section was distributed throughout the system by assigning small,
but specialized, tasks to the various working registers within the system. Separate
buses then interconnected selected pairs of these registers. So there were a number of
working registers, some with their own associated increment, decrement or shift logic
blocks. These associated logic blocks were tantamount to concurrent functional units,
as for example, one working register could be incremented and another decremented
in a single microcode step. Some operations, like shifts, worked on an entire register.
There did not seem to be any two-operand operations making use of two registers.
Osbourne states that typically three to seven operations were executed simultaneously
(i.e. in parallel) during each microcode step.

Figure 1: HP9100A processor architecture

There were no programming tools, no assembler, compiler, or linker, because there
was no processor in the classical sense. The processor was a microprogrammed state
machine that had no classical instruction set or fetch/execute cycle, and did not run
software in the conventional sense, but employed the program ROM to direct the
machine’s operations during each state, to test branch conditions and specify a next
state. The state machine was programmed using graphical flow charts (ASM charts).

The absence of a general-purpose ALU and the graphical programming underscores
that the design was pure ASM, with no attempt to present a traditional programming
model. Rather it was just a bunch of datapath units sequenced by a controlpath finite
state machine, see Figure 1.

ASM charts differ from software flow charts by the incorporation of time, so that
multiple register operations can be executed subject to a multiple conditions all within
a single state. This especially facilitates iterative operations. In the HP 9100A, loops
of this type frequently consisted of a single program word to be repeated until the exit
conditions were met, at which time the microinstructions were inhibited and the next
program word selected. Half of the 64-bit program word was used to encode these
microinstructions. The other half of the 64-bit ‘program word’ was used for
addressing and to test conditions of both internal registers and asynchronous external
signals generated by I/O devices. The results of each test determined the next program
ROM address and whether or not to suppress the action of the microinstructions in the
other half of the program word.

Field Function
0-5 Microinstruction

[x:x+?] Condition code
[y:y+8] Branch target 1
[z:z+8] Branch target 2

Table 2: HP9100A 64-bit program word format

HP state that the HP 9100A processor design had 64 different instructions that were
encoded in a 6-bit field within each program word. The ‘core-on-a-rope’ control
ROM expanded that 6-bit instruction field to a 29-bit microcode instruction ‘control
word’. Nowadays such an approach is now called vertical microprogramming, as
distinct from horizontal microprogramming where the 29 bits would be embedded in a
wider program word. While the control ROM could be thought just an efficient
substitute for random logic, Osbourne also states that the control ROM could alter its
address, so, for example, it could sequence through several control ROM addresses
during a single microprogram step. Nowadays this would be called a sequence of
nanocode. However, Osbourne did not know about even microprogramming when the
HP9100A was designed, let alone vertical microcoding or nanocoding.

Both the program and control words were input to the diode logic on the motherboard.
Each program word included the next control ROM address, modified by logic gates
on the motherboard in response to conditional branching, etc.

An interesting technique was used to test conditions. All of the individual conditions
to be tested were encoded, then compared to a condition subfield of the program
word, and the result determined which of two next-program-address fields was
selected. Osbourne states this technique is free from synchronization failures, but
without substantiation. Board 9 contains the microcode branch logic and error flip-
flop, but a single flip-flop would only reduce, not eliminate, the probability of
synchronization failure.

In all there were 9 program ROM address flip-flops, 6 control logic address flip-flops,
and 9 core memory address flip-flops, plus 16 flip flops for the working registers, a
total of 40 flip-flops, spread over the two flip-flop boards. Although the core memory
was 6-bits wide, not all the working registers were 6-bit. Some had associated logic
blocks, and one register appeared to be particularly important, with the full 6 bits, and
interfaces to the keyboard, card reader and I/O bus, etc. The diode logic determined
whether or not a flip-flop was clocked at the end of each 825 nS clock cycle.

The random-access core memory held the X, Y, and Z and sixteen general registers
(not to be confused with the working registers). The X, Y and Z registers could only
represent floating-point values, with a 10-digit signed mantissa and a 2-digit signed
exponent. The 16 general registers were 6-bits wide per digit, nominally a BCD digit
(but hex F represents -1), sign bit and blanking bit, or a 6-bit program code,
equivalent to one keycode, as there were 62 keys. Thus there were 19 accessible
registers in the core memory. However, it actually implemented 23 registers. The
remaining four registers were not user-accessible, being used for internal storage of
intermediate values and machine state.

Maths operations were performed one digit at a time, least significant digit first, first
retrieving an operand digit from core memory, then operating on it, then saving the
resulting digit back to core memory. Addition was iterative, incrementing one of the
digits, decrementing the other, until the latter reached zero. Multiplication was by
repeated addition, division by repeated subtraction.

The maths functions were in the 64-bit program ROM. Osbourne and Cochran stated
that Malcolm McMillan's implementation of Jack Volder’s CORDIC algorithms
(which use iterative shifts and adds) were the basis for the transcendental functions in
the calculator (the provision of inc/dec/shift fits this assertion). It also employed
natural logarithms as well as J.E.Meggitt’s algorithms for pseudo-division and
pseudo-multiplication to calculate logarithms. It could add or subtract two floating-
point numbers in 2 mS, multiply two numbers in 35 mS, and perform a trigonometric
calculation in 350 mS.

User 'programs', a sequence of ‘instructions’ equal to keycodes, were stored in the
general registers (registers were sacrificed to the program). Each of the 16 registers
could represent either a floating-point value or up to 14 user instructions (for a total
capacity of 196 instructions). External memory could be added by connecting the
HP9101A Extended Memory, which added 248 general registers or 3472 instructions.
Normally the microcode responded to keystrokes, and branched as needed, but when a
program was to be stepped or run, the microcode looked to the general registers for
the next instruction. This is the effective user-level programming model.

Thus in modern terms the HP9100A user-level architecture and programming model
is an ‘RPN’ floating-point processor with instruction opcodes equal to keycodes,
while its low-level microarchitecture is a vertically microprogrammed algorithmic
state machine (ASM) capable of executing sequences of nanoinstructions.

Key
(octal)
Opcode

Operand

Instruction

0..9 00..09 0..9
e, a. b, f, c, d 12..17 e, a. b, f, c, d

CLEAR 20 x, y, z, R(e), R(f), prefix, FLAG � 0
���� 21 Decimal point

ROLL � 22 z � y, y � x, x � z
x � () 23 n Save x � R(n)
y � () 24 n Swap y � R(n)

� 25 x � y, y � z, z � z
ENTER EXP 26 Begin exponent

� 27 z � y, y � x, x � x
x � y 30 Swap x � y

ROLL � 31 x � y, y � z, z � x
CHG SIGN 32 Change sign of mantissa or exponent

++++ 33 y � y ++++ x

−−−− 34 y � y −−−− x
 35 y � y x

×××× 36 y � y ×××× x
CLEAR x 37 x � 0
y � () 40 n Save y � R(n)
STOP 41 Halt and wait for manual instruction
FMT 42 k For use with peripherals

IF FLAG 43 p, q If false, PC � PC+3
Elseif p = (0-9,a-f), then PC � (pq)14
Else PC � PC+1

GO TO () () 44 p, q PC � (pq)14
PRINT 45 For use with peripherals
END 46 PC � (00)14 and end program

CONTINUE 47 Start program execution
IF x = y 50 p, q If false, PC � PC+3

Elseif p = (0-9,a-f), then PC � (pq)14
Else PC � PC+1

 51

IF x < y 52 p, q If false, PC � PC+3
Elseif p = (0-9,a-f), then PC � (pq)14
Else PC � PC+1

IF x > y 53 p, q If false, PC � PC+3
Elseif p = (0-9,a-f), then PC � (pq)14
Else PC � PC+1

SET FLAG 54 FLAG � true
ǁyǁ 55 x � magnitude(x)
π 56 x � π

PAUSE 57 Pause for ~150 mS
ACC + 60 R(f) � R(f) + x, R(e) � R(e) + y
RCL 61 x � R(f), y � R(e)

TO POLAR 62 x � √√√√(x2 + y2), y � tan-1(y/x)
ACC - 63 R(f) � R(f) - x, R(e) � R(e) - y
int x 64 x � integer(x)
ln x 65 x � loge(x)

TO RECT 66 x � x⋅⋅⋅⋅cos(y), y � x⋅⋅⋅⋅sin(y)
hyper 67 sin | cos | tan Hyperbolic prefix

sin x 70 x � {prefix} sin(x)
tan x 71 x � {prefix} tan(x)
arc 72 sin | cos | tan | hyper Inverse prefix

cos x 73 x � {prefix} cos(x)
ex 74 x � ex

log x 75 x � log10(x)
√√√√x 76 x � √√√√x
 77

Table 3: HP9100A instruction set
The program counter (PC) is base-14, i.e. (pq)14 is of the form 01-09,0a-0d, … dd

There are 16 general registers R(n) where n = 0-9,a-f
The FMT operand k is any octal key code (00-77)8

This machine was a considerable achievement. The emergence of microprocessors
and semiconductor memories allowed the algorithms to be transferred out of the
microarchitecture and into conventional memory, so subsequent HP calculators were
able to adopt a more traditional architecture.

Accession Index Object with Identification
: TCD-SCSS-T.20121208.016

HP9100A Programmable Calculator.
S/N: 816-02612.
Core memory label: 810680-A01

Many thanks to Dr.Tony Duell for technical detail, review and corrections.

Trivia1: Supposedly the first machine to be referred to as a “personal computer”.
Trivia2: Tom Osbourne is the inventor of Algorithmic State Machines.
Trivia3: He is also the inventor of “Chip Select”, a derivative of power gating.
Trivia4: He also led the HP35 calculator project.

References:

1. Osbourne, T.E., Hewlett-Packard Calculator Architectures, Chapter 50 in:

Siewiorek, D.P., Bell, C.G., Newell, A., Computer Structures: Principles and
Examples, McGraw-Hill, 1982.

2. HP Journal, Hewlett-Packard, September 1968.

3. HP Journal, Hewlett-Packard, October 1970.

4. HP9100 Documentation: http://hpmuseum.net/exhibit.php?hwdoc=50

Figure 2: HP9100A Programmable Calculator three-quarter view

Figure 3: HP9100A keyboard

Figure 4: HP9100A internal view with top lifted

Figure 5: HP9100A CRT display and power supply

Figure 6: HP9100A top view of motherboard and plug-in boards

Figure 7: HP9100A three-quarter view of motherboard and plug-in boards

Figure 8: HP9100A control logic board 1 top view

The ‘core-on-a-rope’ control ROM is the column of ferrite cores at right

Figure 9: HP9100A control logic board 1 rear view

Figure 10: HP9100A flip-flop board 2 top view

Figure 11: HP9100A flip-flop board 2 rear view

Figure 12: HP9100A core memory board 3 top view

Figure 13: HP9100A core memory board 3 closeup

Label: 810680-A01

Figure 14: HP9100A core memory board 3 rear view

Figure 15: HP9100A core memory sense and inhibit circuits board 4 top view

Figure 16: HP9100A core memory sense and inhibit circuits board 4 rear view

Figure 17: HP9100A flip-flop board 5 top view

Figure 18: HP9100A flip-flop board 5 rear view

Figure 19: HP9100A rear view

Figure 20: HP9100A manufacturing label

S/N: 816-02612

