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Description: 
The HP9100A was Hewlett Packard's first calculator, an electronic programmable 
reverse Polish scientific calculator, a famous product. It was the intellectual and 
philosophical precursor to the equally famous HP35, their first handheld calculator. 
 
The prototype, a floating-point algebraic calculator called the Green Machine, was 
begun privately c.1964 by Tom Osbourne, based on algorithmic state machine 
concepts from his PhD. Once working, he prepared patent documents and then 
conducted demonstrations over the next year to many companies (including HP) 
without eliciting interest until HP was prompted by an ex-colleague, and took on both 
the project and Osbourne. See his recollections in this catalog’s related folder. The 
Green Machine and its design documentation are now in the Smithsonian Institute. 
 
Within HP this design was combined with work on a fixed-point design by the 
mathematician Malcolm McMillan, and evolved to a microprogrammed reverse-
Polish machine with a 3-level stack, that used a high-density inductive printed-circuit 
ROM for algorithms, core memory for storage, a CRT display and a magnetic card 
reader and writer. It did not use any integrated circuits (which were not sufficiently 
low-power then), instead using a form of dynamic logic that Osbourne called "power 
gating" to reduce logic complexity and considerably reduce power consumption (to 
70W max), and it was notably robust, a feature of HP products of that time. 
 
The architecture could perform several operations in parallel and included multi-way 
branching. It had three stack levels, X, Y and Z, all visible on the display. The result 
of two operand functions was stored in Y. There were 16 storage registers in core 
memory, and their contents survived power cycling. Memory was shared between 
programs and data (each register could hold 14 program steps), allowing self-
modifying code. The reader/writer could store 196 program steps on each of two 
tracks on cards somewhat smaller than credit cards. 
 
The keys were in four groups: scientific functions, stack and memory functions, digits 
and basic math, and programming functions. There was a thumb wheel for selecting 
the number of digits displayed after the decimal point, and switches for degrees or 
radians, fixed or floating point, on/off and program/run. It performed many scientific 
calculator functions like loge, log10, antilog, square-root, trigonometrics, hyperbolics, 
their inverses, coordinate conversions, etc, see the brochure in this catalog’s related 
folder. Internally numbers had 12 digits, but users were presented with a 10-digit 
mantissa and 2-digit exponent, with a floating point range of 10-98 to 10+99. 
 
Although these machines are often called RPN (along with the HP9810 which also 
employs the three-register, result-to-Y system), there is no automatic stack lift/drop, 
and they don't behave as any other RPN system, and their behaviour doesn't match 
modern mathematical definitions of RPN. 



 
The HP9100A should not to be confused with the HP9100B, which had more storage 
registers, more program steps, and subroutines. 
 
Mechanically, the HP9100A top cover hinges at the rear. The power supply and CRT 
display are mounted on the underside of the top cover. The base unit contains the 
logic, with a large motherboard (board 6) that is mostly a matrix of diodes, which 
form AND and OR logic gates (which do not need power) for things like the 
incrementing and decrementing. Underneath are the 512 x 64-bit program ROM 
boards 11-14. There are seven plug-in boards, listed from left to right in the table 
below: one small one at each side (9 & 8), two larger boards (1 & 2) at the left and 
three larger boards (3, 4 and 5) in the middle (all boards numbered as per HP9100B 
schematics; the HP9100A may be different in this regard, but it is unlikely). 
 

Board No. Function 
9 Microcode branch logic and error flip-flop 
1 Control logic and control ROM 
2 20 J-K flip-flops 
3 2208-bit Core memory 
4 Core memory sense and inhibit circuits 
5 20 J-K flip-flops 
8 Program ROM instruction decoder 

Table 1: HP9100A plugin boards 
 
Board 9 is the microcode branch logic and error flip-flop. Board 1 contains the control 
logic (CPU clock and control ROM), which clocks at 1.21 MHz (825 nS cycle). 
Boards 2 and 5 each contain 20 J-K flip-flops. Board 8 is the 64-bit program ROM 
instruction decoder. Board 3 is the 2208-bit core memory board (in the HP9100B this 
was increased to 3840-bits). 
 
Board 4 is the core memory sense and inhibit circuits, essentially the 'data' interface to 
the core memory plane, the address drivers being on board 3 with the core plane. This 
is another difference between the HP9100A and HP9100B. In the HP9100B, board 3 
has address drivers only, while board 4 contains the core memory unit and the sense 
and inhibit circuits. Also, in the HP9100B the address drivers are matched to the core 
memory plane, so boards 3 & 4 are joined together by double-width handles and the 
boards are swapped as a set. 
 
There are actually two ROMs in a HP9100A. One is a ‘core-on-a-rope’ (also called 
‘woven-wire’ or ‘braided-wire’) control ROM on the control logic PCB (board 1). 
This is essentially storage for the low-level microcode instruction expansion, see 
further below. It was a non-traditional form of read-only core memory. It consisted of 
29 ferrite cores, with a sense wire through each of the 29 cores, and 64 drive wires 
through some cores (representing a logic one) and around the outside of other cores 
(representing a logic zero). A current pulse in the drive wire inductively generated all 
29 bits of the expanded microcode instruction simultaneously. 
 
The other is the program ROM, which is a 14-layer (some say 16-layer) PCB in the 
middle of the bottom of the machine. It has 256 x 64 bits in a HP9100A (512 x 64 bits 
in a HP9100B), and works by inductive coupling between PCB tracks. The track 



linewidth and separation are both only 0.010”, five times smaller than usual at that 
time. This program ROM is 64-bits wide, but that does not make it a 64 bit machine. 
 
The HP9100A architecture is not conventional, and rarely fully explained. HP state 
that it had a very-long-instruction-word (VLIW) architecture, with highly nested 
VLIW programming, but this is very debateable. There was no general-purpose 
arithmetic/logic unit (ALU) which can operate on various registers. Osbourne states 
that its arithmetic section was distributed throughout the system by assigning small, 
but specialized, tasks to the various working registers within the system. Separate 
buses then interconnected selected pairs of these registers. So there were a number of 
working registers, some with their own associated increment, decrement or shift logic 
blocks. These associated logic blocks were tantamount to concurrent functional units, 
as for example, one working register could be incremented and another decremented 
in a single microcode step. Some operations, like shifts, worked on an entire register. 
There did not seem to be any two-operand operations making use of two registers. 
Osbourne states that typically three to seven operations were executed simultaneously 
(i.e. in parallel) during each microcode step. 
 

 
Figure 1: HP9100A processor architecture 

 
There were no programming tools, no assembler, compiler, or linker, because there 
was no processor in the classical sense. The processor was a microprogrammed state 
machine that had no classical instruction set or fetch/execute cycle, and did not run 
software in the conventional sense, but employed the program ROM to direct the 
machine’s operations during each state, to test branch conditions and specify a next 
state. The state machine was programmed using graphical flow charts (ASM charts). 



 
The absence of a general-purpose ALU and the graphical programming underscores 
that the design was pure ASM, with no attempt to present a traditional programming 
model. Rather it was just a bunch of datapath units sequenced by a controlpath finite 
state machine, see Figure 1. 
 
ASM charts differ from software flow charts by the incorporation of time, so that 
multiple register operations can be executed subject to a multiple conditions all within 
a single state. This especially facilitates iterative operations. In the HP 9100A, loops 
of this type frequently consisted of a single program word to be repeated until the exit 
conditions were met, at which time the microinstructions were inhibited and the next 
program word selected. Half of the 64-bit program word was used to encode these 
microinstructions. The other half of the 64-bit ‘program word’ was used for 
addressing and to test conditions of both internal registers and asynchronous external 
signals generated by I/O devices. The results of each test determined the next program 
ROM address and whether or not to suppress the action of the microinstructions in the 
other half of the program word. 
 

Field Function 
0-5 Microinstruction 

  
[x:x+?] Condition code 
[y:y+8] Branch target 1 
[z:z+8] Branch target 2 

  

Table 2: HP9100A 64-bit program word format 
 
HP state that the HP 9100A processor design had 64 different instructions that were 
encoded in a 6-bit field within each program word. The ‘core-on-a-rope’ control 
ROM expanded that 6-bit instruction field to a 29-bit microcode instruction ‘control 
word’. Nowadays such an approach is now called vertical microprogramming, as 
distinct from horizontal microprogramming where the 29 bits would be embedded in a 
wider program word. While the control ROM could be thought just an efficient 
substitute for random logic, Osbourne also states that the control ROM could alter its 
address, so, for example, it could sequence through several control ROM addresses 
during a single microprogram step. Nowadays this would be called a sequence of 
nanocode. However, Osbourne did not know about even microprogramming when the 
HP9100A was designed, let alone vertical microcoding or nanocoding. 
 
Both the program and control words were input to the diode logic on the motherboard. 
Each program word included the next control ROM address, modified by logic gates 
on the motherboard in response to conditional branching, etc. 
 
An interesting technique was used to test conditions. All of the individual conditions 
to be tested were encoded, then compared to a condition subfield of the program 
word, and the result determined which of two next-program-address fields was 
selected. Osbourne states this technique is free from synchronization failures, but 
without substantiation. Board 9 contains the microcode branch logic and error flip-
flop, but a single flip-flop would only reduce, not eliminate, the probability of 
synchronization failure. 
 



In all there were 9 program ROM address flip-flops, 6 control logic address flip-flops, 
and 9 core memory address flip-flops, plus 16 flip flops for the working registers, a 
total of 40 flip-flops, spread over the two flip-flop boards. Although the core memory 
was 6-bits wide, not all the working registers were 6-bit. Some had associated logic 
blocks, and one register appeared to be particularly important, with the full 6 bits, and 
interfaces to the keyboard, card reader and I/O bus, etc. The diode logic determined 
whether or not a flip-flop was clocked at the end of each 825 nS clock cycle. 
 
The random-access core memory held the X, Y, and Z and sixteen general registers 
(not to be confused with the working registers). The X, Y and Z registers could only 
represent floating-point values, with a 10-digit signed mantissa and a 2-digit signed 
exponent. The 16 general registers were 6-bits wide per digit, nominally a BCD digit 
(but hex F represents -1), sign bit and blanking bit, or a 6-bit program code, 
equivalent to one keycode, as there were 62 keys. Thus there were 19 accessible 
registers in the core memory. However, it actually implemented 23 registers. The 
remaining four registers were not user-accessible, being used for internal storage of 
intermediate values and machine state. 
 
Maths operations were performed one digit at a time, least significant digit first, first 
retrieving an operand digit from core memory, then operating on it, then saving the 
resulting digit back to core memory. Addition was iterative, incrementing one of the 
digits, decrementing the other, until the latter reached zero. Multiplication was by 
repeated addition, division by repeated subtraction. 
 
The maths functions were in the 64-bit program ROM. Osbourne and Cochran stated 
that Malcolm McMillan's implementation of Jack Volder’s CORDIC algorithms 
(which use iterative shifts and adds) were the basis for the transcendental functions in 
the calculator (the provision of inc/dec/shift fits this assertion). It also employed 
natural logarithms as well as J.E.Meggitt’s algorithms for pseudo-division and 
pseudo-multiplication to calculate logarithms. It could add or subtract two floating-
point numbers in 2 mS, multiply two numbers in 35 mS, and perform a trigonometric 
calculation in 350 mS. 
 
User 'programs', a sequence of ‘instructions’ equal to keycodes, were stored in the 
general registers (registers were sacrificed to the program). Each of the 16 registers 
could represent either a floating-point value or up to 14 user instructions (for a total 
capacity of 196 instructions). External memory could be added by connecting the 
HP9101A Extended Memory, which added 248 general registers or 3472 instructions. 
Normally the microcode responded to keystrokes, and branched as needed, but when a 
program was to be stepped or run, the microcode looked to the general registers for 
the next instruction. This is the effective user-level programming model. 
 
Thus in modern terms the HP9100A user-level architecture and programming model 
is an ‘RPN’ floating-point processor with instruction opcodes equal to keycodes, 
while its low-level microarchitecture is a vertically microprogrammed algorithmic 
state machine (ASM) capable of executing sequences of nanoinstructions. 



 
 

Key 
(octal) 
Opcode 

 
Operand 

 
Instruction 

0..9 00..09  0..9 
e, a. b, f, c, d 12..17  e, a. b, f, c, d 

CLEAR 20  x, y, z, R(e), R(f), prefix, FLAG � 0 
���� 21  Decimal point 

ROLL � 22  z � y, y � x, x � z 
x � ( ) 23 n Save x � R(n) 
y � ( ) 24 n Swap y � R(n) 

� 25  x � y, y � z, z � z 
ENTER EXP 26  Begin exponent 

� 27  z � y, y � x, x � x 
x � y 30  Swap x � y 

ROLL � 31  x � y, y � z, z � x 
CHG SIGN 32  Change sign of mantissa or exponent 

++++ 33  y � y ++++ x 

−−−− 34  y � y −−−− x 
 35  y � y  x 

×××× 36  y � y  ××××  x 
CLEAR x 37  x � 0 
y � ( ) 40 n Save y � R(n) 
STOP 41  Halt and wait for manual instruction 
FMT 42 k For use with peripherals 

IF FLAG 43 p, q If false, PC � PC+3 
Elseif p = (0-9,a-f), then PC � (pq)14 
Else PC � PC+1 

GO TO ( ) ( ) 44 p, q PC  � (pq)14 
PRINT 45  For use with peripherals 
END 46  PC  � (00)14 and end program 

CONTINUE 47  Start program execution 
IF x =  y 50 p, q If false, PC � PC+3 

Elseif p = (0-9,a-f), then PC � (pq)14 
Else PC � PC+1 

 51   

IF x <  y 52 p, q If false, PC � PC+3 
Elseif p = (0-9,a-f), then PC � (pq)14 
Else PC � PC+1 

IF x >  y 53 p, q If false, PC � PC+3 
Elseif p = (0-9,a-f), then PC � (pq)14 
Else PC � PC+1 

SET FLAG 54  FLAG � true 
ǁyǁ 55  x � magnitude(x) 
π 56  x � π 

PAUSE 57  Pause for ~150 mS 
ACC + 60  R(f) � R(f) + x,  R(e) � R(e) + y 
RCL 61  x � R(f), y � R(e) 

TO POLAR 62  x � √√√√(x2 + y2), y � tan-1(y/x) 
ACC - 63  R(f) � R(f) - x,  R(e) � R(e) - y 
int x 64  x � integer(x) 
ln x 65  x � loge(x) 

TO RECT 66  x � x⋅⋅⋅⋅cos(y), y � x⋅⋅⋅⋅sin(y) 
hyper 67 sin | cos | tan Hyperbolic prefix 



sin x 70  x � {prefix} sin(x) 
tan x 71  x � {prefix} tan(x) 
arc 72 sin | cos | tan | hyper Inverse prefix 

cos x 73  x � {prefix} cos(x) 
ex 74  x � ex 

log x 75  x � log10(x) 
√√√√x 76  x � √√√√x 
 77   

Table 3: HP9100A instruction set 
The program counter (PC) is base-14, i.e. (pq)14 is of the form 01-09,0a-0d, … dd 

There are 16 general registers R(n) where n = 0-9,a-f 
The FMT operand k is any octal key code (00-77)8 

 
This machine was a considerable achievement. The emergence of microprocessors 
and semiconductor memories allowed the algorithms to be transferred out of the 
microarchitecture and into conventional memory, so subsequent HP calculators were 
able to adopt a more traditional architecture. 
 

Accession Index Object with Identification 
: TCD-SCSS-T.20121208.016 
 

HP9100A Programmable Calculator. 
S/N: 816-02612. 
Core memory label: 810680-A01 

 
Many thanks to Dr.Tony Duell for technical detail, review and corrections. 
 
Trivia1: Supposedly the first machine to be referred to as a “personal computer”. 
Trivia2: Tom Osbourne is the inventor of Algorithmic State Machines. 
Trivia3: He is also the inventor of “Chip Select”, a derivative of power gating. 
Trivia4: He also led the HP35 calculator project. 
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Figure 2: HP9100A Programmable Calculator three-quarter view 

 

 
Figure 3: HP9100A keyboard 

 



 
Figure 4: HP9100A internal view with top lifted 

 



 
Figure 5: HP9100A CRT display and power supply 

 

 
Figure 6: HP9100A top view of motherboard and plug-in boards 

 



 
Figure 7: HP9100A three-quarter view of motherboard and plug-in boards 

 



 
Figure 8: HP9100A control logic board 1 top view 

The ‘core-on-a-rope’ control ROM is the column of ferrite cores at right 
 



 
Figure 9: HP9100A control logic board 1 rear view 

 



 
Figure 10: HP9100A flip-flop board 2 top view 

 



 
Figure 11: HP9100A flip-flop board 2 rear view 

 



 
Figure 12: HP9100A core memory board 3 top view 

 



 
Figure 13: HP9100A core memory board 3 closeup 

Label: 810680-A01 
 



 
Figure 14: HP9100A core memory board 3 rear view 

 



 
Figure 15: HP9100A core memory sense and inhibit circuits board 4 top view 

 



 
Figure 16: HP9100A core memory sense and inhibit circuits board 4 rear view 

 



 
Figure 17: HP9100A flip-flop board 5 top view 



 

 
Figure 18: HP9100A flip-flop board 5 rear view 

 



 
Figure 19: HP9100A rear view 

 

 
Figure 20: HP9100A manufacturing label 

S/N: 816-02612 
 
 


