Accessionindex: TCD-SCSS-T.20121208.016
Accession Date: 8-Dec-2012

Accession By: Prof.J.G.Byrne

Object name: HP9100A Programmable Calculator
Vintage: ¢.1968

Synopsis: HP's first calculator. S/N: 816-02612.

Description:

The HP9100A was Hewlett Packard's first calculadarglectronic programmable
reverse Polish scientific calculator, a famous pobdit was the intellectual and
philosophical precursor to the equally famous HRB&Ir first handheld calculator.

The prototype, a floating-point algebraic calcutatalled theGreen Machingewas
begun privately ¢.1964 by Tom Osbourne, based gorighmic state machine
concepts from his PhD. Once working, he prepareeipaocuments and then
conducted demonstrations over the next year to mamypanies (including HP)
without eliciting interest until HP was prompted duy ex-colleague, and took on both
the project and Osbourne. See his recollectiotisisncatalog’s related folder. The
Green Machine and its design documentation areindlae Smithsonian Institute.

Within HP this design was combined with work onxadl-point design by the
mathematician Malcolm McMillan, and evolved to acroprogrammed reverse-
Polish machine with a 3-level stack, that usedgh-iensity inductive printed-circuit
ROM for algorithms, core memory for storage, a GfSplay and a magnetic card
reader and writer. It did not use any integratedutis (which were not sufficiently
low-power then), instead using a form of dynammidadhat Osbourne called "power
gating" to reduce logic complexity and consideraklyuce power consumption (to
70W max), and it was notably robust, a feature Bfgfioducts of that time.

The architecture could perform several operatiargarallel and included multi-way
branching. It had three stack levels, X, Y andlEyiaible on the display. The result
of two operand functions was stored in Y. Thereenis storage registers in core
memory, and their contents survived power cyclMgmory was shared between
programs and data (each register could hold 14ranogteps), allowing self-
modifying code. The reader/writer could store 18@gpam steps on each of two
tracks on cards somewhat smaller than credit cards.

The keys were in four groups: scientific functiostgck and memory functions, digits
and basic math, and programming functions. Themeasiumb wheel for selecting
the number of digits displayed after the decimahp@nd switches for degrees or
radians, fixed or floating point, on/off and progvaun. It performed many scientific
calculator functions like laglogo, antilog, square-root, trigopnometrics, hyperbglics
their inverses, coordinate conversions, etc, seétbchure in this catalog’s related
folder. Internally numbers had 12 digits, but useese presented with a 10-digit
mantissa and 2-digit exponent, with a floating poimge of 16° to 10°°.

Although these machines are often called RPN (alatigthe HP9810 which also
employs the three-register, result-to-Y systengrehs no automatic stack lift/drop,
and they don't behave as any other RPN systenthairdbehaviour doesn't match
modern mathematical definitions of RPN.



The HP9100A should not to be confused with the HR&] which had more storage
registers, more program steps, and subroutines.

Mechanically, the HP9100A top cover hinges at #a.rThe power supply and CRT
display are mounted on the underside of the togicdhe base unit contains the
logic, with a large motherboard (board 6) that @sstty a matrix of diodes, which
form AND and OR logic gates (which do not need pQvi@ar things like the
incrementing and decrementing. Underneath aretBex%4-bit program ROM
boards 11-14. There are seven plug-in boardsdlfsten left to right in the table
below: one small one at each side (9 & 8), twodatgpards (1 & 2) at the left and
three larger boards (3, 4 and 5) in the middlel@drds numbered as per HP9100B
schematics; the HP9100A may be different in thggard, but it is unlikely).

Board No.] Function

Microcode branch logic and error flip-flop
Control logic and control ROM

20 J-K flip-flops

2208-bit Core memory

Core memory sense and inhibit circuits
20 J-K flip-flops

Program ROM instruction decoder

Table 1: HP9100A plugin boards

U |WIN|F|©

Board 9 is the microcode branch logic and errgrfllop. Board 1 contains the control
logic (CPU clock and control ROM), which clocksla?21 MHz (825 nS cycle).
Boards 2 and 5 each contain 20 J-K flip-flops. Bld&is the 64-bit program ROM
instruction decoder. Board 3 is the 2208-bit coesmary board (in the HP9100B this
was increased to 3840-bits).

Board 4 is the core memory sense and inhibit dscessentially the 'data’ interface to
the core memory plane, the address drivers beirigpard 3 with the core plane. This
is another difference between the HP9100A and H&B1h the HP9100B, board 3
has address drivers only, while board 4 contaiastite memory unit and the sense
and inhibit circuits. Also, in the HP9100B the aglsl drivers are matched to the core
memory plane, so boards 3 & 4 are joined togethietduble-width handles and the
boards are swapped as a set.

There are actually two ROMs in a HP9100A. One‘mee-on-a-rope’ (also called
‘woven-wire’ or ‘braided-wire’)control ROMon the control logic PCB (board 1).
This is essentially storage for the low-level mewde instruction expansion, see
further below. It was a non-traditional form of deanly core memory. It consisted of
29 ferrite cores, with a sense wire through eadhe®®9 cores, and 64 drive wires
through some cores (representing a logic one) emehd the outside of other cores
(representing a logic zero). A current pulse indhge wire inductively generated all
29 bits of the expanded microcode instruction siandously.

The other is therogram ROMwhich is a 14-layer (some say 16-layer) PCB & th
middle of the bottom of the machine. It has 256hbéis in a HP9100A (512 x 64 bits
in a HP9100B), and works by inductive coupling kesgw PCB tracks. The track



linewidth and separation are both only 0.010”, fimees smaller than usual at that
time. This program ROM is 64-bits wide, but thaedmot make it a 64 bit machine.

The HP9100A architecture is not conventional, ardly fully explained. HP state
that it had a very-long-instruction-word (VLIW) ditecture, with highly nested
VLIW programming, but this is very debateable. hetas no general-purpose
arithmetic/logic unit (ALU) which can operate ornrieaus registers. Osbourne states
that its arithmetic section was distributed thromgfithe system by assigning small,
but specialized, tasks to the various working rtegsswithin the system. Separate
buses then interconnected selected pairs of tlegggters. So there were a number of
working registers, some with their own associatedament, decrement or shift logic
blocks. These associated logic blocks were tantattowconcurrent functional units,
as for example, one working register could be imeeted and another decremented
in a single microcode step. Some operations, likiéss worked on an entire register.
There did not seem to be any two-operand operati@isng use of two registers.
Osbourne states that typically three to seven dipeasawere executed simultaneously
(i.e. in parallel) during each microcode step.

6-BIT
CONTROL 64 X 29
ROM CONTROL
ADDRESS ROM
REGISTER

9-BIT
PROGRAM 512 X 64
ROM PROGRAM
ADDRESS ROM
REGISTER

9-BIT
CORE
MEMORY
ADDRESS
REGISTER
23X16X6
CORE
MEMORY

WORKING
REGISTERS

Figure 1: HP9100A processor architecture

There were no programming tools, no assembler, dempr linker, because there
was no processor in the classical sense. The mocess a microprogrammed state
machine that had no classical instruction settwhfexecute cycle, and did not run
software in the conventional sense, but employegtbgram ROM to direct the
machine’s operations during each state, to tesichraonditions and specify a next
state. The state machine was programmed usingigedflow charts (ASM charts).



The absence of a general-purpose ALU and the gralphiogramming underscores
that the design was pure ASM, with no attempt &sent a traditional programming
model. Rather it was just a bunch of datapath waitgienced by a controlpath finite
state machine, see Figure 1.

ASM charts differ from software flow charts by timeorporation of time, so that
multiple register operations can be executed stbpezt multiple conditions all within
a single state. This especially facilitates iteatperations. In the HP 9100A, loops
of this type frequently consisted of a single pamgmword to be repeated until the exit
conditions were met, at which time the microinstiarcs were inhibited and the next
program word selected. Half of the 64-bit progranrdwvas used to encode these
microinstructions. The other half of the 64-bitdgram word’ was used for
addressing and to test conditions of both intemegisters and asynchronous external
signals generated by I/O devices. The results ci ézst determined the next program
ROM address and whether or not to suppress thenaatithe microinstructions in the
other half of the program word.

Field Function
0-5 Microinstruction

[Xx:x+?] Condition code
[y:y+8] Branch target 1
[z:2+8] Branch target 2

Table 2: HP9100A 64-bit program word format

HP state that the HP 9100A processor design hatiffédent instructions that were
encoded in a 6-bit field within each program wadFte ‘core-on-a-rope’ control
ROM expanded that 6-bit instruction field to a 2®rbicrocode instruction ‘control
word’. Nowadays such an approach is now calledoadnnicroprogramming, as
distinct from horizontal microprogramming where #fbits would be embedded in a
wider program word. While the control ROM couldtheught just an efficient
substitute for random logic, Osbourne also stdtasthe control ROM could alter its
address, so, for example, it could sequence threagéral control ROM addresses
during a single microprogram step. Nowadays thigld/be called a sequence of
nanocode. However, Osbourne did not know about everoprogramming when the
HP9100A was designed, let alone vertical microcgdinnanocoding.

Both the program and control words were input eodiode logic on the motherboard.
Each program word included the next control ROMrads, modified by logic gates
on the motherboard in response to conditional limaugg etc.

An interesting technique was used to test condstiédl of the individual conditions
to be tested were encoded, then compared to atmondubfield of the program
word, and the result determined which of two nextgoam-address fields was
selected. Osbourne states this technique is foee $iynchronization failures, but
without substantiation. Board 9 contains the miod®cbranch logic and error flip-
flop, but a single flip-flop would only reduce, ngliminate, the probability of
synchronization failure.



In all there were 9 program ROM address flip-flofpgontrol logic address flip-flops,
and 9 core memory address flip-flops, plus 16ffbps for the working registers, a
total of 40 flip-flops, spread over the two flipfi boards. Although the core memory
was 6-bits wide, not all the working registers wéseit. Some had associated logic
blocks, and one register appeared to be partigulaportant, with the full 6 bits, and
interfaces to the keyboard, card reader and I/QdtasThe diode logic determined
whether or not a flip-flop was clocked at the efiéach 825 nS clock cycle.

The random-access core memory held the X, Y, aaddZsixteen general registers
(not to be confused with the working registers)e ™) Y and Z registers could only
represent floating-point values, with a 10-diggreéd mantissa and a 2-digit signed
exponent. The 16 general registers were 6-bits paeligit, nominally a BCD digit
(but hex F represents -1), sign bit and blankingdsia 6-bit program code,
equivalent to one keycode, as there were 62 kdyss There were 19 accessible
registers in the core memory. However, it actuaiplemented 23 registers. The
remaining four registers were not user-accesdidmg used for internal storage of
intermediate values and machine state.

Maths operations were performed one digit at a,tleeest significant digit first, first
retrieving an operand digit from core memory, tlegerating on it, then saving the
resulting digit back to core memory. Addition weerative, incrementing one of the
digits, decrementing the other, until the lattexaleed zero. Multiplication was by
repeated addition, division by repeated subtraction

The maths functions were in the 64-bit program R@Wdbourne and Cochran stated
that Malcolm McMillan's implementation of Jack Velts CORDIC algorithms
(which use iterative shifts and adds) were thedfasithe transcendental functions in
the calculator (the provision of inc/dec/shift fitss assertion). It also employed
natural logarithms as well as J.E.Meggitt’s aldgons for pseudo-division and
pseudo-multiplication to calculate logarithms.dutd add or subtract two floating-
point numbers in 2 mS, multiply two numbers in 3S,rand perform a trigonometric
calculation in 350 mS.

User ‘programs’, a sequence of ‘instructions’ etuékycodes, were stored in the
general registers (registers were sacrificed tgpthgram). Each of the 16 registers
could represent either a floating-point value otafi4 user instructions (for a total
capacity of 196 instructions). External memory coloé added by connecting the
HP9101A Extended Memory, which added 248 genegasters or 3472 instructions.
Normally the microcode responded to keystrokes,laadched as needed, but when a
program was to be stepped or run, the microcodeslbto the general registers for

the next instruction. This is the effective usareleprogramming model.

Thus in modern terms the HP9100A user-level archite and programming model
is an ‘RPN’ floating-point processor with instruati opcodes equal to keycodes,
while its low-level microarchitecture is a vertilgamicroprogrammed algorithmic
state machine (ASM) capable of executing sequeniceanoinstructions.



(octal)
Key Opcode Operand Instruction
0.9 00..09 0.9
e,a.b,fcd 12.17 e,a.b,fcd
CLEAR 20 X, Y, z, R(e), R(f), prefixcLAG « 0
. 21 Decimal point
ROLL 7T 22 Z<Y, YeEX, XeZ
X () 23 n Savex = R(n)
yS() 24 n Swapy S R(n)
J 25 Xey,yez,z2¢2
ENTER EXP 26 Begin exponent
) 27 Z<eyY, YeX, XeX
X5y 30 Swapx 5y
ROLL { 31 Xey, yez,2eX
CHG SIGN 32 Change sign of mantissa or exponen
+ 33 yey+Xx
- 34 yey—X
= 35 yey = X
X 36 yey X X
CLEAR X 37 X< 0
y = () 40 n Savey = R(n)
STOP 41 Halt and wait for manual instruction
FMT 42 k For use with peripherals
IF FLAG 43 p, q If false, PCe< PC+3
Elseifp = (0-9,a-f) thenPC < (pQ)4
Else PC< PC+1
GOTO()() | 44 P, g PC < (PQ)s
PRINT 45 For use with peripherals
END 46 PC < (00)14 and end program
CONTINUE 47 Start program execution
IFX=vy 50 P, q If false, PC< PC+3
Elseifp = (0-9,a-f) thenPC « (pQ).4
Else PC< PC+1
51
IFX<'y 52 P, q If false, PC«< PC+3
Elseifp = (0-9,a-f) thenPC « (pQ).4
Else PC< PC+1
IFX>y 53 P, q If false, PC< PC+3
Elseifp = (0-9,a-f) thenPC « (pQ).4
Else PC< PC+1
SET FLAG 54 FLAG « true
Iyl 55 X < magnitudéx)
Tt o6 X Tl
PAUSE 57 Pause for ~150 mS
ACC + 60 R(f) « R(f) + x, R(€) « R(e) +y
RCL 61 X < R(f),y <« R(€)
TO POLAR 62 X « V(X2 + V), y « tan*(y/x)
ACC - 63 R(f) « R(f) - x, R(e) « R(®) -y
int x 64 X « integer(x)
In x 65 X < l0ge(X)
TO RECT 66 x < x[dos(y), y« x[Sin(y)
hyper 67 sin | cos | tan Hyperbolic prefix




sin X 70 X « {prefix} sin(x)
tan X 71 X « {prefix} tan(x)
arc 72 sin | cos |tan | hypey  Inverse prefix
COS X 73 X « {prefix} cos(x)
e 74 x « €&
log x 75 X < l0g;0(X)
VX 76 X < VX
77

Table 3: HP9100A instruction set
The program counter (PC) is base-14, ifg)(4 is of the form 01-09,0a-0d, ... dd
There are 16 general registersriRfvheren = 0-9,a-f
The FMT operand is any octal key code (00-%7)

This machine was a considerable achievement. Tleegamce of microprocessors
and semiconductor memories allowed the algorithorisettransferred out of the
microarchitecture and into conventional memorysglosequent HP calculators were
able to adopt a more traditional architecture.

Accession | ndex Object with I dentification

: TCD-SCSS-T.20121208.016 | HP9100A Programmable Calculator.
S/N: 816-02612.
Core memory label: 810680-A01

Many thanks to Dr.Tony Duell for technical detadyiew and corrections.
Trivial: Supposedly the first machine to be refdrre as a “personal computer”.
Trivia2: Tom Osbourne is the inventor of AlgoritienSitate Machines.

Trivia3: He is also the inventor of “Chip Selec#,derivative of power gating.

Trivia4: He also led the HP35 calculator project.

References:

1. Osbourne, T.EHewlett-Packard Calculator Architecture€hapter 50 in:
Siewiorek, D.P., Bell, C.G., Newell, AComputer Structures: Principles and
ExamplesMcGraw-Hill, 1982.

2. HP Journal Hewlett-Packard, September 1968.

3. HP Journal Hewlett-Packard, October 1970.

4. HP9100 Documentatiohttp://hpmuseum.net/exhibit.php?hwdoc=50




Figure 2: HP9100A Programmable Calculator three-geaview

IF SET
FLAG FLAG

IF
1<y PAUSE

IF
x=y

y=u yau
— -

x->t)

Figure 3: HP9100A keyboard



Figuré 4: HI5§10A internal view with top lifted



CAUTION !
USE INSULATED
BCREWDRIVER FOR

ADJUSTMENTS

RO

LRI

PTHTEERINNTSR penaaesandneenonsay

ﬁ
{
3 :,E:zEEE:EE:::EE

TR

Figure 6: HP9100A tp view of motherboard and pindpoards



‘g

"

od4
‘i
“
.....
o]
il
‘e
(74
‘d

-

Figure 7: HP9100A three-qurter view of motherboardl plug-in boards



Figure 8: HP9100A control logic board 1 top view
The ‘core-on-a-rope’ control ROM is the columnefrite cores at right



Rsa——

1tv.vvu,~.v.v,v,‘h

T s s e i

Figure 9: HP9100A control logic board 1 rear view



J A3¥ 20599-00160
VSN NI3AVA

z
441414 I

Figure 10: HP9100A flip-flop board 2 top vie




:r:::

4

999919

Figure 11: HP9100A flip-flop board 2 rear view



Figure 12: HP9100A core memory board 3 top view



SR EEEEREA RS eR cie s

Vw00 o

i ) |
Figure 13: HP9100A core memory board 3 closeup
Label: 810680-A01




»hew

A
»
!
’
.
.
»
L
.
.




Figure 15: HP9100A core memory sense and inhilbdueis board 4 top view



-
-

SSssasdgaenmon

-

wle®e
- TR

-
.

- -
L -

-~ - L

e aTe AV WY WY W

AR i aNe ]l .Y

- -
* 2 a e

- N

Figure 16: HP9100A core memory sense and inhibituitis board 4 rear view



T

S

O T

v v\ T u)f.

Aot | Doat | .l

-flop board 5 top view

Figure 17: HP9100A flip



\ .!kl,
OB adneliy egame el
> E -
- - ion
L i

s

AASASAZAAREEERE R R RN

FERTRNANN

-flop board 5 rear view

Figure 18: HP9100A flip



Figure 20: HP9100A manufacturing label
S/N: 816-02612



